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Abstract: Parity-time (PT ) symmetric Bragg gratings (PTBGs) exhibit unique band character-
istics compared to their traditional counterparts. Notably, when the PT symmetry is broken,
the initial bandgap closes, and the upper and lower branches coalesce. We demonstrate that this
believed to be novel band dispersion supports fast light, also known as the optical superluminal-
ity. A light pulse can propagate through a fiber PTBG with broken PT symmetry, achieving
high transmission efficiency (comparable to, and even exceeding, unity) while maintaining its
Gaussian shape. This effect offers a significant advantage over superluminal tunneling, where
the transmission coefficient is typically very small. We also analyze the transmission of optical
precursors and show that they cannot be superluminal, consistent with the principle of causality.
This work presents a mechanism for realizing superluminality with some possible applications
and underscores the vast potential of non-Hermitian optics.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Over the past decade, the concept of parity-time (PT ) symmetry [1–4] has gained significant
attention within the physics community. A PT system is characterized by spatially distributed
gain and loss, making it an open system that does not conserve energy. This unique property has
led to the proposal and demonstration of various interesting phenomena and effects that cannot
exist in traditional closed systems [5–9]. The study of PT symmetry has opened up new avenues
for exploring the behavior of open systems and developing new technologies for manipulating
light and matter.

The phases of PT systems can be categorized into three types [1–4]. The phase characterized
by real eigenvalues is termed the exact PT phase. If any eigenvalue becomes complex, the
PT symmetry is said to be broken. The transition point separating the exact and broken PT

phases is known as the exceptional point (EP), where the quantum space collapses, and some real
eigen-solutions coalesce. Most research on PT symmetry has focused on EPs and the exact PT

phase. In the broken PT phase, because complex eigenvalues typically represent decaying and
growing modes, studies have primarily concentrated on the performance of lasing or coherent
absorption in this regime, see [1,2] and references therein.

This article highlights a unique property of systems exhibiting broken PT symmetry: their
potential to enable efficient superluminal optical pulse transmission. We focus on PT -symmetric
Bragg gratings (PTBGs) in optical fibers [10–19] and demonstrate how a PTBG operating in the
broken PT phase can achieve this phenomenon. Superluminality, the seemingly paradoxical
ability to exceed the speed of light has long intrigued physicists due to its apparent violation of
Einstein’s theory of special relativity and the principle of causality [20–22]. In classic closed
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systems, superluminal behavior can be observed during tunneling through opaque barriers, such
as traditional Bragg gratings [22–27]. However, the extremely low tunneling coefficients in such
scenarios limit the practical applications of this effect. We show that introducing broken PT

symmetry can close the bandgap in PTBGs, leading to a dispersion relation with a slope greater
than the speed of light c/nb, where nb is the index of refraction of the fiber. This enables efficient
superluminal transmission of optical pulses, distinct from the tunneling phenomena. Additionally,
we analyze the transmission of optical precursors [28–30] and demonstrate that their propagation
speed remains c/nb, consistent with the principle of causality regarding the transmission of signal
(message or information). This work reveals a mechanism for achieving superluminality with
some potential applications, contributing to the burgeoning field of non-Hermitian physics.

2. Method and analysis

2.1. Photonic band structure

Let us consider the fiber PTBG shown in Fig. 1, in which fields propagate along the x direction.
The background medium of the fiber has a real refractive index of nb = 1.5. A section of the fiber
is imprinted with a perturbation of complex refractive index ∆n so that n(x) = nb + ∆n(x). Here
we assume that the perturbation ∆n is PT symmetric. Within the unit cell of −2d<x<2d, we
can define 4 layers, where

∆n(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

+m(1 + jδ), −2d<x<−d, (layer − A)

−m(1 − jδ), −d<x<0, (layer − B)

−m(1 + jδ), 0<x<d, (layer − C)

+m(1 − jδ). d<x<2d, (layer − D)

(1)

This definition of a unit cell implies that the refractive index perturbation satisfies the PT -
symmetry condition∆n(−x) = ∆n(x)∗. Here, m (equal to 0.1) denotes the amplitude of modulation
in the real part of the refractive index (nr), while mδ represents the amplitude of modulation in the
imaginary part (ni). Parameter δ represents the strength of the PT symmetry. The perturbation
∆n exhibits periodicity with a period L equal to 4d, where d is the thickness of each layer. It’s
important to note that the classification of ∆n is not absolute. Shifting the unit cell by a distance d
alters the layer sequence within the unit cell from ABCD to BCDA. Consequently, if we re-define
x = 0 as the interface between layers C and D, the refractive index perturbation within the BCDA
unit cell now obeys the relationship ∆n(−x) = −∆n(x)∗. This specific symmetry condition is
referred to as anti-PT symmetry [31–33].

Fig. 1. Schematic of the PTBG configuration under investigation.

Considering the layered configuration of PTBGs shown in Fig. 1, with the step-like modulations
in both nr and ni given by Eq. (1), we propose to use the semi-analytical approach of the transfer
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matrix method (TMM) [5,8,10,16,19] to study the photonic band structure and the transmission
properties of the fiber PTBGs. We first calculate the dispersion relation (ω, K) of PTBGs, where
K is the Bloch wavevector. Although the emphasis of the present article is on the broken phase,
to clearly demonstrate the novel dispersion of PTBG for superluminal light, we also show the
scenario of an exact PT phase at δ = 0.8 in Fig. 2(a). In the exact PT phase, a nonzero band
gap around the Bragg frequency ωPBG = cπ/(Lnb) = 0.667cπ/L is open. This band gap can
be referred as the ω gap [34,35], around which the group velocity, given by vg = ∂ω/∂K, is
smaller than c/nb. This effect is a well-documented mechanism for realizing slow light or high
density of states. Within the ω gap, no propagation mode is permitted, and the superluminal
tunneling of it has been studied in the Refs. [19,22–27]. When the magnitude of δ increases and
passes the EP around 1 [19], the PT phase is broken. The ω gap is now closed. The upper and
lower branches do not reach the Brillouin zone edge at KBZ = π/L. Instead, they approach each
other and connect smoothly at KEP, which satisfies KEP<KBZ . The region between KEP and KBZ
possesses complex K values due to the broken PT phase [18,19]. We can refer to this gap as the
K gap, similar to that in photonic time crystals [35]. The K gap is not the focus of this article
because the external incident pulses from the input region possess real-ω harmonic components,
which should mainly excite the modes in the gapless dispersion (ω, K) of the broken PT phase.
Focusing on the gapless dispersion (outside the K gap) shown in Fig. 2, we can see the arc of ω
versus K evidently produces superluminality (or fast light) with vg>c/nb, as shown by the blue
circles in Fig. 2(b). The existence of this fast-light dispersion, which ranges continuously across
ωPBG, is a key emphasis of this article.

Fig. 2. Dispersion and group velocities at exact (δ = 0.8, red squares) and broken (δ = 1.2,
blue circles) PT phases, respectively.

When an optical pulse enters from the input region, its spectrum comprises various harmonic
components, each with a distinct real angular frequency ω. Employing the TMM method allows
us to determine the complex amplitudes of both forward and backward propagating waves for each
harmonic component. These waves exhibit phases of exp[−jn(x)kx + jωt] and exp[jn(x)kx + jωt]
respectively, where k = ω/c represents the real wave-number in free space. Figure 2 illustrates
that despite the complex nature of the wave-vector n(x)k within each layer (due to the complex
refractive index n(x)), the Bloch mode of the periodic structure remains harmonic, characterized
by a real Bloch wavevector K. However, it’s important to note that Bloch’s theorem strictly applies
to infinitely long structures. In our scenario, both the input and output regions consist of uniform
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fiber, while the PTBG section itself has a finite length. Consequently, the transmission spectra
may exhibit features that deviate from the predictions of Bloch’s theorem. To demonstrate the
potential of the broken PT phase for field manipulation, we investigate the transmission spectra
and the corresponding phase gradient of a 100-period fiber PTBG by using TMM. The phase
gradientτgt, which is also termed the group delay of transmission [19], is defined as the derivative
of the transmission phase ϕt with respect to angular frequency, i.e., τgt = ∂ϕt/∂ω, where the
complex transmission coefficient is defined by tPTBG = |tPTBG | exp(−jϕt). Transmittance (T) is
the squared magnitude of the transmission coefficient, T = |tPTBG |

2. To ensure comparability
with conventional fiber Bragg gratings, we require the structure to function as a Bragg grating
when the strength of the PT symmetry (δ) is zero. Therefore, we modify the unit cell to a
DABC sequence by shifting the original one by a quarter period. This modification preserves the
dispersion relation (ω, K) while ensuring consistent transmission characteristics between the two
unit cell definitions, as verified through our calculations discussed at the end of this article.

Figure 3 illustrates the transmission characteristics of PTBGs in the broken PT phase when
δ = 1.2. The inset also displays the results in the exact PT phase at δ = 0.8. When the PT

phase is conserved, a tunneling region with nearly zero transmittance T around ωPBG is observed,
indicating the existence of a ω gap. However, when the PT phase is broken, the ω gap closes,
resulting in effective transmission. In this case, the transmittance T around ωPBG exceeds one.
The non-conservation of energy can be attributed to the non-Hermitian nature of PTBGs and the
limited length of PTBGs, which violates the strict requirements of Bloch’s theorem. The phase
gradient τgt also reaches an extreme low value at ωPBG. Although similar to that of the exact PT

phase, τgt can be smaller than zero at ωPBG in the broken PT phase, which is indicative of the
fast-light dispersion shown in Fig. 2. Below, we will demonstrate that this PT phase transition
and the non-uniform T can still facilitate efficient transmission (no longer tunneling) of optical
pulses while preserving their shapes.

Fig. 3. (a) Transmittance and (b) the phase gradient versus ω when δ = 1.2. Inset shows
the results of δ = 0.8. The unit of time τ0 equals d/c.

2.2. Superluminal pulse transmission

The high transmittance and the fast-light dispersion would help to realize efficient superluminal
transmission. To prove this effect, we use TMM to simulate the transmission of an optical pulse
in the fiber PTBG. The incident field Ei is assumed to have a Gaussian profile in the x direction,
and the central frequency is the Bragg one at ωPBG (corresponding to a wavevector k of ωPBG/c
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in free space), that

Ei(x) = E0 exp

[︄
−
(x − x0)

2

w2
0

]︄
exp

(︂
−j

nbωPBG

c
x
)︂

. (2)

The waist w0 of the pulse should be comparable to, or even larger than, the thickness of PTBGs.
The initial position of the incident pulse is denoted as x0, and the origin of the coordinate system,
x = 0, is set at the input interface of the fiber PTBG.

The incident pulse can be expressed as a Fourier series of Ei =
∑︁

k Ek exp(−jnbkx). First, we use
discrete Fourier expansion to find the spectrum of the incident pulse. Then, for each component Ek,
we calculate the complex scattering coefficients in each layer (tk for the forward wave and rk for the
backward wave) as well as in the input and output regions using TMM. At a given time delay t, the
scattered field is reconstructed using the inverse discrete Fourier expansion. For example, consider
layer A, where the complex field components at the input interface at xA are tAk Ek and rA

k Ek. At time t,
the complex field is given by EA

t (x) =
∑︁

k Ek{tAk exp[−jnAk(x−xA)]+rA
k exp[jnAk(x−xA)]} exp(jωt)

where ω = ck.
Figure 4 illustrates the intensity distribution (I = |E |2, normalized by I0 = |E0 |

2) at various
time delays within the structure with x0 = −550d. The parameters used here are consistent with
those in Figs. 2 and 3. The waist of the incident pulse, w0, is set to 240d, which is comparable to
the total thickness of the PTBG structure (400d). The blue dashed pulse serves as a reference,
indicating the pulse’s position and shape if it were to propagate directly through the fiber without
interacting with the PTBG structure. As the pulse approaches and enters the PTBG structure, we
observe the excitation of various harmonic modes within the structure, leading to interference
patterns. When the time delay is sufficiently large (e.g., >1300τ), a transmitted pulse emerges
on the other side of the PTBG. It’s important to highlight that, unlike tunneling phenomena
characterized by weak amplitudes, the transmitted pulse in this broken PT -symmetric phase
exhibits a comparable, and even larger, magnitude compared to the reference pulse. Moreover, the
transmitted pulse retains its Gaussian shape and demonstrates a significant spatial advancement
compared to the reference pulse, indicating superluminal transmission. The spatial advancement,
denoted as ∆ (as defined in Fig. 5), can reach up to 380d for the specific case presented in Fig. 4.

The efficient superluminal pulse transmission is sensitive to the waist w0 of the pulse. On one
hand, a larger w0 can lead to a greater spatial advance ∆ because the spectrum of the incident
pulse, with a smaller broadening of δω = cδk/nb = cℏ/2nbw0, can be well situated inside the
fast-light region. On the other hand, a large w0 reduces the bit rate for potential communication
applications, as discussed in the context of the buffer application of slow light [36]. To achieve
high-bit-rate transmission, w0 should be kept as small as possible. A smaller w0 is associated
with a larger δω, and the spectrum of the incident pulse might extend into the luminal region
with vg = c/nb, thereby compromising the superluminal transmission. To demonstrate the
trade-off between w0 and ∆, we calculate the transmission of the pulse at various w0 values. As
shown in Fig. 5, when w0 is larger than the previously discussed value, such as w0 = 400d, the
superluminal feature can still be observed. The spatial shift ∆ saturates at 415d when w0 exceeds
600d. For short pulses with significantly smaller w0, for example, 200d, the advance ∆ in the
pulse peak cannot be distinguished because the pulse undergoes multiple reflections inside the
PTBG, resulting in a series of transmitted pulses. Similar results are found in the subsequent
study on optical precursors.

It’s crucial to emphasize that the observed superluminal transmission is intricately linked to
the specific dispersion characteristics of the broken PT -symmetric structure around its resonant
frequency, ωPBG. If the central frequency of the incident pulse is shifted away from ωPBG, the
group velocity predicted by the dispersion curve (as shown in Fig. 2) approaches the speed of
light in the background medium (c/nb). This implies that the pulse would experience neither
a delay nor an advancement. Our TMM simulations (not included here) have validated this
phenomenon.
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∑

Fig. 4. Distributions of field intensity I/I0 at different time delays, where τ0 = d/c. The
blue dashed pulse represents the signal when it is directly transmitted through the fiber
without the PTBG structure, and it is used as a reference. The insets in (b) and (c) show the
global view of I/I0. The maximum value of I/I0 is greater than 12 in (c).

Fig. 5. The dependence of the spatial shift ∆ versus the width w0 of incidence.

2.3. Precusors are not superluminal

A long-standing debate on superluminality centers around whether it violates Einstein’s theory of
special relativity and the principle of causality, which states that the speed of any signal cannot
exceed the speed of light. Various solutions to this paradox have been proposed. For example,
in the case of superluminal tunneling, it is argued that since most of the energy is reflected,
superluminal tunneling cannot effectively transport a signal [22]. For gain media, the paradox
is explained using precursors, which are sharp singularity jumps in the pulse; since the signal
cannot be predicted and cannot be expressed by any analytical mathematical formula [28–30]. In
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open systems, such as time-varying photonic crystals, superluminality can be explained by the
fact that energy is not conserved [35].

The fiber PTBGs discussed here are also open systems, meaning that energy is not conserved
within them. However, we still aim to examine the mechanism of precursors in this article. Since
a signal (or information) is inherently unpredictable, the Gaussian function used in Eq. (1) cannot
represent a signal, as it is analytical for all values of x (from −∞ to +∞) and its position at a
given time delay can be predicted if a distant observer can detect the local wave function from
the signal. This predictability is why scientists have suggested that the simplest signal is the one
in which the field is initially zero and then suddenly turns on to a finite value (or vice verse),
which is commonly referred to as a step-modulated pulse [28–30]. These step-modulated pulse
fronts can be considered as the optical precursors.

The precursors are random signals in the form of a δ function. To mimic a precursor, we start
with Ei as given in Eq. (1) and assume that the leading edge is cut off to create a step-like front,
that

Ei(x) = E0 exp
(︂
−j

nbωPBG

c
x
)︂ ⎧⎪⎪⎨
⎪⎪⎩

exp
[︂
−

(x−x0)
2

w2
0

]︂
, x<x0

0. x>x0

(3)

Figure 6 illustrates the distribution of the field at various time delays. Notably, the transmitted
pulse shape exhibits significant distortion compared to the reference. This distortion stems
from the broadened spectrum of the precursor, primarily attributed to the step-modulated front.
Consequently, the pulse undergoes multiple reflections within the PTBG, resulting in the splitting
of the transmitted pulse into multiple peaks. Despite the superluminality of the main transmitted
pulse, a step-shaped precursor remains observable and aligns precisely with the precursor on the
reference. This observation confirms that the precursors propagate still at the speed of light in
the fiber (c/nb), reinforcing the principle that the signal cannot exceed the speed of light. This
simulation agrees well with existing literature on precursors transmitted or tunneled through gain
media or opaque barriers [28–30]. It further substantiates the interpretation of the precursor as
the carrier of signal or information in physics, demonstrating its adherence to the principles of
causality.

Fig. 6. Distributions of transmitted and reflected pulse for precursors at different time
delays. Blue dashed pulse is the reference. The insets in (c) and (d) show the global view of
I/I0. The maximum value of I/I0 is greater than 10 in (c).
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3. Discussion

Each unit of PTBG comprises at least four layers, and a spatial shift of the unit cell does not alter
the dispersion curves. However, because the PTBG structure is not infinite long as required by the
Bloch’s Theorem, the order of layers within each unit cell still might influence the phenomenon
of superluminal transmission. To explore this possibility and demonstrate the versatility of
achieving superluminal transmission with different values of the parameter δ, Fig. 7 presents two
standard TMM simulation results for δ = 1.1. The input pulse is assumed to be a precursor, and
two distinct unit cell arrangements, ABCD and CDAB, are displayed.

Fig. 7. Distributions of transmitted and reflected pulse for precursors at δ = 1.1 when
t = 1600τ0. The layer sequences are (a) ABCD and (b) CDAB, respectively.

Figure 7 reveals that the sequence of layers within the unit cell significantly impacts both
the transmitted and reflected pulses. However, the observed differences are solely in the
field amplitude, without affecting the pulse shape. Importantly, the optical precursors remain
consistent with these on the reference. These simulation results provide valuable insights into the
phenomenon of superluminal transmission discussed in this article. Firstly, the TMM simulation
demonstrates that the superluminal transmission is efficient and achievable within the broken
PT phases with a suitable range of δ. Secondly, the transmission is sensitive to the intricate
structure of PTBG materials. However, the superluminal transmission exhibits robustness to the
sequence of layers within the unit cell. Thirdly, the optical precursors consistently maintain their
luminal nature, that they always propagate at the speed of light c/nb in the fiber.

The sign of δ also plays a crucial role in regulating the scattering of fields from PTBGs.
Figure 8 shows the distributions of transmitted and reflected fields when δ = −1.2 for both the
incidence of a Gaussian beam and a precursor. When compared to Figs. 4 and 6, where δ = 1.2, it
is evident that although the transmitted fields are independent of the sign of δ, the reflected fields
(also the excited fields inside PTBGs) shown in Fig. 8 are significantly diminished compared to
those in Figs. 4 and 6. This feature confirms the well-known asymmetric reflection property of
PT systems, which is potentially useful for manipulating the Q factor of resonators for lasing
applications [1,2,14–16,19].

Before concluding the numerical analysis, we wish to briefly present the results obtained at EP,
which requires setting δ = ±0.9963 as indicated in [19]. The simulation results for the incidence
of an optical precursor are shown in Fig. 9. The observation delay is set to t = 2200τ0 to allow
sufficient time for the excited field to be efficiently emitted from PTBGs. From Fig. 9, we can
see that in both cases, the transmitted pulses overlap perfectly with the reference. Unlike the
situations displayed in Figs. 6 and 7, there are no fields preceding the precursors, implying that
superluminality does not exist in this scenario. Regarding the reflected components, similar to
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Fig. 8. Distributions of transmitted and reflected fields when δ = −1.2 for the incidence of
(a-c) a Gaussian beam and (d-f) a precursor, respectively.

Fig. 9. Distributions of transmitted and reflected fields at EP when t = 2200τ0. (a)
δ = 0.9963 and (b) δ = −0.9963. The inset in (a) shows the global view of I/I0.

the asymmetric reflection discussed above, when δ = 0.9963, a very strong reflected pulse is
obtained, with the maximum value of I/I0 exceeding 60. In contrast, when δ = −0.9963, the
reflected field is nearly zero. These features are consistent with the collapse of dispersion curves
at KBZ [19] and confirm the so-called unidirectional invisibility at EPs [8,9,19].

The study of superluminality in light primarily stems from our scientific curiosity regarding
the principle of causality. This phenomenon also holds potential for applications in fields such
as telecommunications, information storage, information processing, and interferometry [21].
The theoretical analysis and simulations presented in this article unequivocally demonstrate the
existence of efficient superluminal transmission in PTBGs with broken PT symmetry. These
findings confirm the principle of causality in the propagation speed of signals. Moreover, they
underscore the immense potential of non-Hermitian physics with broken PT symmetry, as the
transmission coefficient (T>1) observed in this study is significantly higher than that of tunneling
(T ≪ 1). Since the behavior of optical waves can be extended to other harmonic waves, such
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as acoustic waves and polaritons, the T>1 superluminality effect can be utilized to manipulate
the interactions among waves (or particles) with different group velocities. More specifically, to
enhance the interaction among different waves or particles, we could not only employ slow-light
techniques to reduce the speed of the fast-propagating waves, but also use the superluminal effect
to accelerate those with lower speeds.

The combination of nonlinearity [17,18,35] with superluminality in PTBGs could also lead
to numerous attractive applications. However, it is important to emphasize that simulating and
analyzing the interaction of optical pulses with nonlinear PTBGs requires the development
of novel algorithms beyond the ordinary approaches such as finite-difference time-domain
(FDTD) and TMM. FDTD requires artificial techniques to handle gain for different harmonic
components in the pulse, and they tend to diverge significantly. The TMM method employed
in this article cannot account for the nonlinear contribution because optical nonlinearity is
sensitive to local field strength. Addressing this challenge remains an open question for future
research. As for experimental validation, to translate our findings into practical reality, we can
take advantage of state-of-the-art experimental advancements discussed in numerous influential
review articles [1,2,19], particularly those offering insights into design rules for PT -symmetric
gratings operating at 1550 nm [37]. The main challenge in experiments, we believe, is controlling
both the spatial distribution and the magnitude of gain.

4. Conclusion

In summary, we show that the dispersion of fiber PTBGs with broken phase supports superluminal
light. A light pulse can transmit through a fiber PTBG of broken PT phase with a high efficient
and a preserved Gaussian shape. Such an effect has an obviously advantage over superluminal
tunneling where the transmission coefficient is very small. We also discuss the transmission of
optical precursors, and show that the precursors cannot be superluminal, in agreement with the
principle of causality. This work presents a mechanism for realizing superluminality with some
possible applications and underscores the vast potential of non-Hermitian optics.
Funding. National Natural Science Foundation of China (12104203, 12104227, 12274241); Scientific Research
Foundation of Nanjing Institute of Technology (YKJ202021); Jiangxi Double-Thousand Plan (jxsq2023101069).

Disclosures. The authors declare no conflicts of interest.

Data availability. Data underlying the results presented in this paper are not publicly available at this time but may
be obtained from the authors upon reasonable request.

References
1. L. Feng, R. El-Ganainy, and L. Ge, “Non-Hermitian photonics based on parity-time symmetry,” Nat. Photonics

11(12), 752–762 (2017).
2. R. El-Ganainy, K. G. Makris, M. Khajavikhan, et al., “Non-Hermitian physics and PT symmetry,” Nat. Phys. 14(1),

11–19 (2018).
3. S. K. Ozdemir, S. Rotter, F. Nori, et al., “Parity-time symmetry and exceptional points in photonics,” Nat. Mater.

18(8), 783–798 (2019).
4. M. A. Miri and A. Alù, “Exceptional points in optics and photonics,” Science 363(6422), 42–53 (2019).
5. S. Longhi, “Spectral singularities and Bragg scattering in complex crystals,” Phys. Rev. A 81(2), 022102 (2010).
6. K. G. Makris, R. El-Ganainy, D. N. Christodoulides, et al., “Beam dynamics in PT symmetric optical lattices,” Phys.

Rev. Lett. 100(10), 103904 (2008).
7. M. C. Zheng, D. N. Christodoulides, R. Fleischmann, et al., “PT optical lattices and universality in beam dynamics,”

Phys. Rev. A 82(1), 010103 (2010).
8. Z. Lin, H. Ramezani, T. Eichelkraut, et al., “Unidirectional invisibility induced by PT-symmetric periodic structures,”

Phys. Rev. Lett. 106(21), 213901 (2011).
9. A. Mostafazadeh, “Invisibility and PT symmetry,” Phys. Rev. A 87(1), 012103 (2013).
10. K. Ding, Z. Q. Zhang, and C. T. Chan, “Coalescence of exceptional points and phase diagrams for one-dimensional

PT-symmetric photonic crystals,” Phys. Rev. B 92(23), 235310 (2015).
11. E. K. Keshmarzi, R. N. Tait, and P. Berini, “Parity-time symmetry-broken Bragg grating operating with long-range

surface plasmon polaritons,” Appl. Phys. A 122(4), 279–283 (2016).

https://doi.org/10.1038/s41566-017-0031-1
https://doi.org/10.1038/nphys4323
https://doi.org/10.1038/s41563-019-0304-9
https://doi.org/10.1126/science.aar7709
https://doi.org/10.1103/PhysRevA.81.022102
https://doi.org/10.1103/PhysRevLett.100.103904
https://doi.org/10.1103/PhysRevLett.100.103904
https://doi.org/10.1103/PhysRevA.82.010103
https://doi.org/10.1103/PhysRevLett.106.213901
https://doi.org/10.1103/PhysRevA.87.012103
https://doi.org/10.1103/PhysRevB.92.235310
https://doi.org/10.1007/s00339-016-9832-1


Research Article Vol. 32, No. 24 / 18 Nov 2024 / Optics Express 42499

12. T. Hao and P. Berini, “Directional coupling with parity-time symmetric Bragg gratings,” Opt. Express 30(4),
5167–5176 (2022).

13. P. A. Brandao and S. B. Cavalcanti, “Bragg-induced power oscillations in PT-symmetric periodic photonic structures,”
Phys. Rev. A 96(5), 053841 (2017).

14. Y. G. Boucher and P. Feron, “Parity-time symmetry in laterally coupled Bragg waveguides,” IEEE J Quan. Elect.
55(6), 1–9 (2019).

15. Z. J. Chen, H. D. Wang, B. Luo, et al., “Parity-time symmetric Bragg structure in atomic vapor,” Opt. Express 22(21),
25120 (2014).

16. S. Vignesh Raja, A. Govindarajan, A. Mahalingam, et al., “Tailoring inhomogeneous PT-symmetric fiber-Bragg-
grating spectra,” Phys. Rev. A 101(3), 033814 (2020).

17. S. Phang, A. Vukovic, H. Susanto, et al., “Impact of dispersive and saturable gain/loss on bistability of nonlinear
parity-time Bragg gratings,” Opt. Lett. 39(9), 2603–2606 (2014).

18. M. Ali Miri, A. B. Aceves, T. Kottos, et al., “Bragg solitons in nonlinear PT-symmetric periodic potentials,” Phys.
Rev. A 86(3), 033801 (2012).

19. L. T. Wu, X. Z. Zhang, T. J. Guo, et al., “Superluminality in parity-time symmetric Bragg gratings,” Phys. Scr. 99(8),
085544 (2024).

20. L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406(6793), 277–279
(2000).

21. R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science 326(5956), 1074–1077 (2009).
22. H. G. Winful, “Tunneling time, the Hartman effect, and superluminality: a proposed resolution of an old paradox,”

Phys. Rep. 436(1-2), 1–69 (2006).
23. S. Longhi, M. Marano, P. Laporta, et al., “Superluminal optical pulse propagation at 1.5 µm in periodic fiber Bragg

gratings,” Phys. Rev. E 64(5), 055602 (2001).
24. G. D’Aguanno, M. Centini, M. Scalora, et al., “Group velocity, energy velocity, and superluminal propagation in

finite photonic band-gap structures,” Phys. Rev. E 63(3), 036610 (2001).
25. A. M. Steinberg and R. Y. Chiao, “Subfemtosecond determination of transmission delay times for a dielectric mirror

(photonic band gap) as a function of the angle of incidence,” Phys. Rev. A 51(5), 3525–3528 (1995).
26. Ch. Spielmann, R. Szipocs, A. Stingl, et al., “Tunneling of optical pulses through photonic band gaps,” Phys. Rev.

Lett. 73(17), 2308–2311 (1994).
27. T. E. Hartman, “Tunneling of a wave packet,” J. Appl. Phys. 33(12), 3427–3433 (1962).
28. D. J. Gauthier and R. W. Boyd, “Fast light, slow light and optical precursors: what does it all mean?” Photonics

Spectra 41(1), 82–90 (2007).
29. H. Jeong, A. M. C. Dawes, and D. J. Gauthier, “Direct observation of optical precursors in a region of anomalous

dispersion,” Phys. Rev. Lett. 96(14), 143901 (2006).
30. S. Zhang, J. F. Chen, C. Liu, et al., “Optical precursor of a single photon,” Phys. Rev. Lett. 106(24), 243602 (2011).
31. L. Ge and H. E. Tureci, “Antisymmetric PT-photonic structures with balanced positive- and negative-index

materials,” Phys. Rev. A 88(5), 053810 (2013).
32. Y. Choi, C. Hahn, J. W. Yoon, et al., “Observation of an anti-PT-symmetric exceptional point and energy-difference

conserving dynamics in electrical circuit resonators,” Nat. Commun. 9(1), 2182–2187 (2018).
33. L. T. Wu, X. Z. Zhang, R. Z. Luo, et al., “Non-Hermitian guided modes and exceptional points using loss-free

negative-index materials,” Opt. Express 31(9), 14109–14118 (2023).
34. A. M. Jazayeri, “Fixed points on band structures of non-Hermitian models: extended states in the bandgap and ideal

superluminal tunneling,” Phys. Rev. B 107(14), 144302 (2023).
35. Y. Pan, M. I. Cohen, and M. Segev, “Superluminal k-gap solitons in nonlinear photonic time crystals,” Phys. Rev.

Lett. 130(23), 233801 (2023).
36. J. B. Khurgin and R. S. Tucker, Slow Light: Science and Applications (CRC Press, 2018), pp. 293–320.
37. H. Benisty, V. B. de la Perriere, A. Ramdane, et al., “Parity-time symmetric gratings in 1550 nm distributed-feedback

laser diodes: insight on device design rules,” J. Opt. Soc. Am. B 38(9), C168–c174 (2021).

https://doi.org/10.1364/OE.450960
https://doi.org/10.1103/PhysRevA.96.053841
https://doi.org/10.1109/JQE.2019.2947566
https://doi.org/10.1364/OE.22.025120
https://doi.org/10.1103/PhysRevA.101.033814
https://doi.org/10.1364/OL.39.002603
https://doi.org/10.1103/PhysRevA.86.033801
https://doi.org/10.1103/PhysRevA.86.033801
https://doi.org/10.1088/1402-4896/ad6358
https://doi.org/10.1038/35018520
https://doi.org/10.1126/science.1170885
https://doi.org/10.1016/j.physrep.2006.09.002
https://doi.org/10.1103/PhysRevE.64.055602
https://doi.org/10.1103/PhysRevE.63.036610
https://doi.org/10.1103/PhysRevA.51.3525
https://doi.org/10.1103/PhysRevLett.73.2308
https://doi.org/10.1103/PhysRevLett.73.2308
https://doi.org/10.1063/1.1702424
https://doi.org/10.1103/PhysRevLett.96.143901
https://doi.org/10.1103/PhysRevLett.106.243602
https://doi.org/10.1103/PhysRevA.88.053810
https://doi.org/10.1038/s41467-018-04690-y
https://doi.org/10.1364/OE.487278
https://doi.org/10.1103/PhysRevB.107.144302
https://doi.org/10.1103/PhysRevLett.130.233801
https://doi.org/10.1103/PhysRevLett.130.233801
https://doi.org/10.1364/JOSAB.428638

