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Abstract
Parity-time ( ) symmetric Bragg gratings (PTBGs) possess unique features compared to traditional
ones. For example, the photonic bandgap of a PTBG can bemodified and even closedwhen the 
symmetry evolves from an exact phase to a broken one, and the complex reflection coefficient of a
PTBG is sensitive to the direction of incidence. In this article, we reveal how the superluminal effects of
transmission behave following themodified band structure of PTBGs. The superluminality of the
directionally sensitive reflection is also discussed.We then investigate theHartman effect and argue
that, to account for the superluminal effects in PTBGs, a directionally sensitive dwell time should be
applied. This study offers unique insights into themechanisms of superluminality and group delay of
light in non-Hermitian open systems and contributes to the advancement of PTBGs, which can
eventually become an indispensable platform for probing some of the exotic properties of optical wave
phenomena and light–matter interactions.

1. Introduction

The faster-than-c superluminal effect is an interesting topic of investigation because it seemingly violates
Einstein’s theory of special relativity and the principle of causality, which states that the speed of any signal
cannot exceed the velocity of light c [1–7]. Variousmechanisms of optical superluminality have been proposed
and verified, including the propagation of light pulses inmedia with either gain-induced abnormal dispersions
or negative indexes [4–6], in photonic time crystals where the refractive index oscillates periodically in time [7],
and the tunneling through opaque barriers or photonic bandgaps (PBGs) [1–3].

Recent advancements of parity-time ( ) symmetry [8–12] provide a new avenue for investigating the
superluminal tunneling effect of light. Considering a traditional passive Bragg grating (i.e. one-dimensional
photonic crystals) inwhich the real part nr of the refractive index n varies periodically in space. In the dispersion
curves of such a grating, certain PBGs emerge, which prohibit the propagation of anymodes and result in strong
reflection of incident fields. These propertiesmake passive Bragg gratings valuable for constructing high-Q
resonators, which serve as indispensable platforms for probing some exotic properties of optical wave
phenomena and light–matter interactions. Furthermore, the tunneling process through a PBGhas been shown
to be superluminal,meaning that the group delay of transmission (GDT) τgt is shorter than the background
group delay τgb required for traversing the same distance directly [3, 13–16]. The principle of causality is argued
to be preserved in this process because the tunneling coefficient is veryweak, and the signal ormessage is
primarily held by the reflectedfield [13].

The presence of  symmetry significantly alters the characteristics of PBGs. In  -symmetric Bragg
gratings (PTBGs), both the real component nr and the imaginary component ni of the refractive index
n= nr+ jni aremodulated periodically in space. Themodulation periods d of nr and ni are equal, but their peaks
are shifted by a quarter of d, rendering the structure no longer inversion symmetric (seefigure 1). The
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modulation in ni canmodify thewidths of PBGs and even close themwhen crossing exceptional points (EPs)
[8–12], triggering a phase transition from the unbroken  phase to the broken one [17–20]. Themodified
PBGs of PTBGs offer a range of interesting applications, including the realization of unidirectional invisibility
[21–25], the construction of single-mode lasers [26–28], and the generation of power oscillations [29–31]. In
addition, inhomogeneous [32] and nonlinear PTBGs [33, 34], alongwith various nonlinear effects such as
bistability [35], instability [36], and solitons [37, 38], have also been investigated. As thewidth of a PBGdictates
certain characteristics of tunneling, this article focuses on the associated superluminal effect in PTBGs. Although
superluminal aspects of  systems have been explored by other research groups [39–41], to the best of our
knowledge, the specific topic addressed in this article has not been previously reported.

Furthermore, it has been argued that the reflection associatedwith tunneling through a barrier or a PBG is
also superluminal (see [13] and references therein). For a symmetric barrier, the group delay of reflection (GDR)
τgr equals the group delay of transmission (GDT) τgt [13]. However, PTBGs differ fromordinary ones in several
aspects. For example, although gain-loss elements alone or  symmetry cannot induce nonreciprocal
transmissionwithout the presence of time-reversal symmetry breaking factors such as nonlinearity,magnetic
fields, or time-modulation [42–44], themagnitude of reflection from aPTBG is sensitive to the direction of
incidence [8, 9, 21–26, 42–44]. The reflection coefficient of intensity from a PTBG can even exceed unity because
the system is non-Hermitian and energy is not conservedwithin it. These features are absent in ordinary passive
structures. Since the reflection from aPBG also exhibits superluminal characteristics [13], PTBGs provide an
opportunity to examine and challengemanywell-known conclusions about the superluminality of light and the
principle of causality.

In light of the above considerations, this article focuses on the superluminal effects in PTBGs.We investigate
how the delay times (τgr and τgt) varywith the adjustable PBG at different  phases. The underlying physical
mechanism is briefly explored using theHartman effect [45–50] and the concept of dwell times [13]. This study
aims to contribute to our understanding of the longstanding paradox of superluminality, highlight the
advantages of  symmetry, and advance the development of PTBGs for various important applications.

2.Method and analysis

2.1. Photonic band structure and superluminality in the exact  phase
The structure of a PTBG is shown infigure 1. The growth direction of themultilayer is x, and the forward
(backward) incidence represents the case that the inputfield comes from the left (right) and propagates toward
the+x (−x) direction.Media inside the structure are nonmagnetic, so only the dielectric constant ε varies
periodically. To ensure the  symmetry of n(x)= n*(− x) [8, 9], we can define the distribution of n inside a
unit cell within−0.5d< x< 0.5d by

Figure 1. Schematic of the PTBG configuration under investigation.We are interested in the transmission and reflection features of
the 1st PBG. Inset depicts the forward incidence.

2

Phys. Scr. 99 (2024) 085544 L-TWu et al



⎧

⎨
⎪

⎩
⎪

( )

( )
( )
( )
( )

( )

d
d
d
d

=

+ - - < < -
- + - < <
- - < <
+ + < <

n x

n A j d x d

n A j d x

n A j x d

n A j d x d

1 , 0.5 0.25 ,

1 , 0.25 0,

1 , 0 0.25 ,

1 , 0.25 0.5 ,

1

b

b

b

b

with n(x+ d)= n(x), d is the period.Here nb is the background index of refraction in PTBG,A andAδ are the
amplitudes ofmodulation in nr and ni, respectively. All these parameters are real. In our studywe set nb= 1.5
andA= 0.1, and change the variable δ to see how the photonic band structure, the complex coefficients of
reflection and transmission, and the superluminality varywith the  symmetry. Sincewe are interested in
free-standing PTBGs, the input and output regions are assumed to be vacuumwith ns= 1. In experiments, the
PTBG structures can also be fabricated in certain substrates, e.g. in fiber Bragg gratings with ns= nb outside the
gratings [8, 9, 22, 23, 32]. However, different choices of nswould notmodify the physics of the superluminal
tunneling discussed in this article.

The optical fields inside PTBGs can be analyzed by solving theHelmholtz equation [19, 22, 28], and the
modulation in nwould couple the forward and backwardwaves together [22, 23, 33, 34]. Considering the
layered configuration of PTBGs shown infigure 1, with the step-likemodulations in both nr and ni given by
equation (1), wewould use the semi-analytical approach of transfermatrixmethod (TMM) [19, 22, 23, 28] to
study the transmission/reflection spectra and the associated field distributions throughout this article. In the
TMMapproach, each unit of PTBG can be divided into four layers. The thickness of each layer is d/4, with a
complex index of refraction n given by equation (1). At a given angular frequencyω, thefield inside them-th
layer is expressed by a sumof forward ( f ) and backward (b)propagating waves, e.g.
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n for a transverse electricalmode, where
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The transfermatrixMa of thewhole PTBG can be found by a sequence ofmatrixmultiplications from the region
of input to the region of output. The complex coefficients of reflection r and transmission t are rigorously defined
fromMa by r=−Ma(2, 1)/Ma(2, 2) and t=Ma(1, 1)+ rMa(1, 2). The TMMapproach can also give the
dispersion of the photonic band structure. Considering the unit cell shown infigure 1, once thematrixMu of this
unit is found, the dispersion relation (ω, k) can be determined from the eigen-solutions ofMu by

( ) ( )- =jkd eig Mexp u [19, 37], where |k|� kPBG, kPBG= π/d is the reducedwavevector at the Brillouin
zone edge.

By using TMMwefirst calculate the dispersion relation (ω, k) of PTBGs. The band structures at different δ
values are shown infigure 2. Note that them− th PBG ismainly formed by the coupling between the
k=±mkPBG plane-wave componentsmediated by the Fourier component of fm in

( ) ( )= + å -¹n x n f j mk xexp 2b m m PBG0 , and herewe only pay attention to the 1st PBGbecause themagnitude
of f1 ismuch larger than the other components fm≠0,1. Characteristics of the calculated PBG agree well with the
prediction by using the plane-wave expansion (PWE)method that requires a Fourier expansion of ε−1 [51]. In
the PWEmethodwe need to solve theHelmholtz equation of ε−1(x)∂2EPWE/∂x

2+ ω2EPWE/c
2= 0, where

( )w= å - - +E E jkx jmk x j texpPWE m m PBG ,m is an integer [19, 22, 28, 51]. Because themodulation in n is
veryweak compared to the background nb, the lowest three components of ε−1 are given by

( ) ( )+ - + ++ -a a j k x a j k xexp 2 exp 2PBG PBG0 , where = -a nb0
2, ( )d= - -+

-a n A2 1b
3 , and

( )d= - +-
-a n A2 1b

3 . Thefirst PBG is realized at thewavevector k= kPBG, primarily consisting of
( )w= - ++E E jk x j texp PBG0 and ( )w= + +- -E E jk x j texp PBG1 withinEPWE, because their wavevectors have

the samemagnitudes and they areω-degenerate before coupling.Only retaining these two components, and
substituting ε−1 into theHelmholtz equation, we can find that the 1st PBG is determined by solving
[ ][ ] ( ) [ ]w=+ - + - + -a a a a E E ck E E, ; , , ,T

PBG
T

0 0
2 . Central point of this PBG isωPBG= ckPBG/nb= 2.094c/d,

and thewidth is w dD = -A n1PBG b
2 . PWEpredicts that an increased δwould reduce thewidthΔ, and an

EP is achieved at δ= 1whereΔ= 0.When δ> 1 the system should enter the broken  phase [17–19].
As demonstrated infigure 2, themagnitude of δ significantly impacts thewidthΔ of thefirst PBG, in

agreementwith the prediction of PWE.When compared to the case with δ= 0, the introduction of a non-zero δ
results in a decrease in the PBG’s size.When δ= 0.9963 (slightly less than one because other Fourier
components of ε−1, though very small, still contribute to the formation of PBGs), an EP is reached. At this point,
the dispersion curves exhibit linear dependence and coalesce at the band edge kPBG, as shown infigure 2(c). PBG
is closed in this case.With further increases in δ, the  phase breaks downnear the band edge. The lower
(upper) branch retains a super (sub)-linear dependence, as illustrated in the zoom-in inset offigure 2(d). It is
important to emphasize that the dispersion curves presented in figure 2 are obtained by scanning the solutions
of ( ) ( )- =jkd eig Mexp u [19, 37] at different realω values. Consequently, a loop of non-zero { }Im k within PBG
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of the unbroken  phase is obtained, similar to [37]. This { }Im k loop yields two solutions at a givenω. The
two solutions are opposite to each other: the onewith { } <Im k 0 represents an evanescently decayingmode,
while the onewith { } >Im k 0 represents an evanescently growingmode [37]. In PBGswe could only excite the

{ } <Im k 0mode, which plays a crucial role in the tunneling process. Furthermore, TMMcannot find the loop
of non-zero { }wIm in the broken  phase [37], hence this loop is not depicted in figure 2(d). To identify this

{ }wIm -loop, othermethods need to be employed by keeping a real value of k and scanning the complex
solutions ofω, such as the one proposed in [37]. In experimental settings, realω is always preferred and easily
achievable. To experimentally access the region of non-zero { }wIm , state-of-the-art techniques for complex
frequencywaves can be utilized, as detailed in [52–54] and references therein. It’s essential to remember that the
band structure shown infigure 2 applies only to infinitely large structures. It is used to explain themain features
in the transmission and reflection spectra, such as PBGswithT= 0. For finite-thickness PTBGs, the scattering of
thefield inevitably involves complexmodes associatedwith the boundaries of PTBGs, which cannot be
explained solely by the photonic band structure.

After analyzing the variation of PBG versus δ, we then pay attention to the transmission spectra of PTBGs.
The associated transmission coefficient of intensityT= |t|2 and the relative group delayΔt can be found by using

( )t tD = - , 3t gt gb

where ∣ ∣ ( )f= -t t jexp t , theGDT τgt and the background delay τgb are defined by

( )t
f
w

=
¶
¶
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Whendispersion in nb is ignored, τgb= nbNd/c in aN-period PTBG. Superluminality requiresΔt< 0, that τgt is
shorter than the directly propagating time τgb.

Figure 3 illustrates the transmission characteristics of PTBGswithN= 80 for both δ= 0 and δ= 0.8. A
region of tunneling can be observed, and its position alignswell with the 1st PBG. For instance, when δ= 0, the
1st PBG falls within the angular frequency (ω) interval of 2.0072 to 2.1826 in units of c/d, and the region of
T< 0.1 spans from2.0043 to 2.1845.When δ increases to 0.8, the 1st PBG shifts to the range 2.004 33 to 2.1465,
while the regionwithT< 0.1 now extends from2.0385 to 2.1495. It is evident that PBGplays a crucial role in
defining the tunneling region. Correspondingly, the relative group delayΔt also drops below zerowithin these

Figure 2.Dispersion curves (ω, k) of PTBGs at different δ values. Only the 1st PBG atωPBG = ckPBG/nb = 2.094c/d is displayed. (a)
Inside PBGonly nonzero- { }Im k solutions (purple dashed lines) can be found. (b)when δ increases, the widthΔ of PBGdecreases,
andfinally coalesces into an EP. Inset shows a zoom-in illustration of how the dispersion curves transform from the linear dependence
in (c) to the sub- or super-linear dependence in (d).
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regions, providing evidence of superluminal tunneling, as previously reported in [13]. Notably, superluminal
phenomena are also observable beyond the PBG-assigned tunneling region (as shown in the insets offigure 3).
However, these occurrences are relatively feeble and exhibit high vulnerability to the parameterN, in contrast to
those observedwithin the PBG range.

2.2. Superluminality in the broken  phase
With further increases in δ values, portions of the band dispersion exhibit EPs and even a broken  phase, as
depicted infigures 2(c) and (d). The transmission characteristics in these scenarios are investigated and
presented infigure 4.

Figure 4 reveals that as we approach EP and enter the broken  phase, the initial null transmission
observedwithin PBGdisappears. The value ofTmoves away from zero, which is directly related to the vanishing
PBGof PTBGs shown infigure 2(d). Additionally, sharp transmission peaks emerge, with amplitudes that can
significantly exceed unity. This indicates the presence of amplified transmission, consistent with [21–23]. Such a
T> 1 effect can be intuitively explained by the non-Hermitian nature of PTBGs, where energy is not conserved.
The incident field excites certain complexmodes, whose amplitudes increase with the propagation distance x
and eventually dominate the transmission.

We also investigate the relative group delayΔt in these scenarios and present the results infigures 4(c) and
(d). Remarkably, we observe that superluminality is still achievable in the broken  phase and at EP. As
previouslymentioned, our focus is typically on the superluminality of optical tunneling, whereT is near zero,
and only a very small fraction of photons survive the tunneling process through the barrier. The results displayed
infigure 4 suggest that tunneling is not the onlymechanism for achieving superluminality.

The significance of the results shown infigure 4 lies in their demonstration that superluminality can be
observed evenwhen the transmission efficiency is high (T> 1). Consequently, the superluminal effect in PTBGs
is potentially easier to observe compared to traditional Bragg gratings or barriers withT<< 1.Note that
superluminality has been shown to be supported in gainmediawith abnormal dispersion [5, 13]. In the present
study, we do not consider any abnormal dispersion in n, implying that the observed superluminalitymust be
associatedwith the real wavevectors of guidedmodeswithin PTBGs. To support this claim,we can refer to the
Hartman effect, whichwill be discussed in the next section.

Before proceeding to the next section, it is worthwhile to verify the concept of unidirectional invisibility at
EP [22, 23, 32]. It is well-known that while the transmissionT in a  symmetric structure is independent of the
direction of incidence, the reflection exhibits directional sensitivity,meaning thatRf≠ Rb, where f and b
represent the forward and backward incidence, respectively. Unidirectional invisibility refers to the extreme
wave phenomenon at EP, whereT= 1 and eitherRf= 0 orRb= 0, but not both [22, 23, 32]. However, this effect
strictly requires that the input/output regions and PTBG share the same background refractive index nb, such as

Figure 3. (a), (b)Transmission coefficient of intensityT and (c), (d) the relative group delayΔtwhen (a), (c) δ = 0 (traditional Bragg
grating) and (b), (d) δ = 0.8 (exact  phase), respectively. HereN = 80. The insets provide a close-up view of the curves at the long-
wavelength side of PBGor tunneling region, with the y-axis limitsmatching those of the respectivemain figures.
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infiber Bragg gratings [22, 23, 32]. By setting the refractive indices in the input and output regions to
ns= nb= 1.5 instead of 1, we performTMMsimulations again and verify the existence of this phenomenon.
Figure 5 presents the calculation results under this condition forN= 80. A perfect unidirectional invisibility is
now achieved becauseT= 1 andRb is nearly zero atωPBG (see green stars infigure 5).

2.3. TheHartman effect
Hartman analyzed the temporal aspects of tunneling and discovered that the delay time becomes independent of
the barrier thickness and eventually saturates for very thick barriers [45–47]. TheHartman effect demonstrates
that the delay in tunneling is not a transit time but a lifetime, with its origin being the saturation of stored energy
when the barrier length exceeds the decay length [13]. Therefore, by utilizing theHartman effect, we can
determinewhich effect dominates transmission in PTBGs: the transit time of a decayingmode or the
propagation of guidedwaves with real k.

Figure 4. (a), (b)Transmission coefficient of intensityT and (c), (d) the relative group delayΔtwhen (a), (c) δ = 0.9963 (EP) and (b),
(d) δ = 1.2 (broken  phase), respectively. HereN = 80.

Figure 5. (a)Transmission and (b) reflection spectra of forward and backward incidences at EP. In order to observe an unidirectional
invisibility atωPBG, the refractive indexes in the input and output regions are set to be ns = nb = 1.5. Note that the transmission is
reciprocal so only a single curve ofT is displayed in (a).
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TheGDT τgt defined in equation (4) can be used to verify theHartman effect. Figure 6 illustrates the
variations of τgt versusω at different numbers of periodsN in both the unbroken (δ= 0.8) and broken  phase
(δ= 1.2). Fromfigure 6(a), we observe that the value of τgt atωPBG remains a constant and does not changewith
the thicknessNd of PTBGs. The presence of theHartman effect infigure 6(a) indicates that PTBGs now function
as opaque barriers. Thewavevector k of the excitedmode is purely imaginary, and the field decays exponentially
away from the input interface.

When the  phase is broken, such as when δ= 1.2 as shown infigure 6(b), theHartman effect is no longer
observed.While the τgt curve exhibits a dip atω= ωPBG, its value is no longer constant for different values ofN.
Considering thatT is also no longer zero in this case (see figure 4), we can conclude that this dip in τgt (and inT)
is not associatedwith a real PBG. Indeed, as indicated by the band structure infigure 2(d), the incident field at
ω= ωPBG can always excitemodeswith non-zero { }Re k . This would preclude theHartman effect because now
the propagation effect of guidedmodes contributes to the transmission process.

To corroborate the above analysis, we calculate the field distributions within PTBGs. The results for the
incidence ofω= ωPBG at δ= 0.8 and δ= 1.2 are presented infigure 7. Two different grating thicknesses, namely
N= 80 and 120, are considered. Figures 7(a) and (c) show that when δ= 0.8, where the  phase is conserved,
thefields inside PTBGs decaymonotonically away from the input interface. Once the PTBG lengthNd exceeds
the decay length, any further increase inN does not alter the amplitude and pattern of the fieldwithin the
structure. This demonstrates that the transmission process is analogous to the tunneling through an opaque
barrier. ThisN-independent distribution of the evanescent field is precisely the key feature of theHartman effect
[13, 45–47].

However, a completely different scenario emerges when the  phase is broken. As evident from
figures 7(b) and (d), the field inside the grating is no longer evanescently decaying, and a few oscillating periods
can be observed. This indicates thatmodes with { } ¹Re k 0 are excited.Notably, thefield envelope now
undergoes a long-wavelengthmodulation. This resembles the formation ofMoire patterns through the
interference amongmultiplemodes with slightly different real wavevectors k. Unlikefigures 7(a) and (c), with
increased grating lengthNd, the field pattern shifts alongwith the output interface. Themaximumamplitude of
thefieldwithin the structure also changes, but the period of the long-wavelengthmodulation remains constant.
Comparing these observations tofigures 7(a) and (c), the absence of theHartman effect in this broken-
phase can be readily explained, that the excitedmode no longer decays purely and the transmission process
primarily involves resonant propagation.

2.4.Direction-sensitive superluminal reflections
In the preceding analysis, we have demonstrated that PTBGs provide a versatile platform formanipulating and
investigating the superluminal effect of optical tunneling. Now,we aim to address another crucial question: how
do the superluminalitymanifest itself in the reflection spectra?Notably, in the study of superluminality,
researchers have observed that for a symmetric barrier, the delay times in the transmission and reflection spectra
are identical,meaning that τgr= τgt [13]. However, for a PTBG, the reflection coefficient r is sensitive to the
direction of incidence [8, 9], implying that this coincidencemust be broken.

For this purpose we calculate the reflection coefficient of intensityR= |r|2, where ∣ ∣ ( )f= -r r jexp r , and the
associated delay (GDR) τgr defined by

Figure 6.GDT τgtwhen (a) δ = 0.8where  symmetry is conserved, andwhen (b) δ = 1.2where the  phase is broken,
respectively, for different numbersN of periods. Hartman effect exists only in (a).
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Results for δ= 0.8 andN= 80 are shown infigure 8. Both forward (blue) and backward (red) incidences are
calculated. For comparison, the curve ofGDT τgt is also displayed alongside those of τgr as a purple line.

Consistent with the literature on directionally sensitive reflection [8, 9], we observe thatRf andRbmay have
different values.Within PBGwe getRf> Rb. Themaximumvalue ofRf exceeds one atωPBG, which is a non-
Hermitian signature of PTBGs. RegardingGDR τgr, atωPBG all values are smaller than the background delay τgb,
similar to that of GDT. Associatedwith the asymmetric reflection, GDR also becomes directionally dependent.
GDRof the forward incidence (blue line) is smaller than that of the backward incidence (red line). Infigure 8(b),
we also display the curve ofGDT τgt. Since transmission is independent of the direction of incidence according
to the principle of reciprocity, only a single curve ofGDT is shownhere. From figure 8(b), we can see that τgt
briefly overlapswith the forwardGDR τgr.

The difference inGDRmust be associatedwith the direction-sensitive excited field (especially the
amplitude) inside PTBGs.We calculate thefield distributions atωPBG for both forward and backward
incidences, and show them infigures 8(c) and (d).We observe that although the decay lengths are identical in
these two cases, the excitedfield is indeed sensitive to the direction of incidence. The amplitude of the excited
field for forward incidence is larger than that for backward incidence, resulting inRf> Rb.

3.Discussion

The simulations and analysis presented above confirm the existence of superluminality in both the reflection
and transmission spectra of PTBGs.However, the group delay of reflection can exhibit different values for
opposite incidences. Themechanism of superluminality of the directionally sensitive reflectionwarrants a brief
discussion here.

Focusing on the scenario of conserved  symmetry,Winful [13] argued that the group delay in tunneling
should represent a lifetime rather than a transit time because k is purely imaginary. For electromagnetic pulses,
the group delay corresponds to the lifetime of stored energy leaking out fromboth ends of the barrier. Since the
lifetime is averaged over all incoming fields, regardless of whether they are ultimately transmitted or reflected, to
be consistent with the literature [13, 48–50], the dwell time τd should be expressed as

Figure 7.Distributions offield amplitude atωPBG in PTBGs for (a), (b)N = 80 and (c), (d)N = 120 andwhen (a), (c) δ = 0.8 and (b),
(d) δ = 1.2, respectively. The amplitude offield E is normalized by the incident field Ei. In the input region only the reflected fieldEr is
displayed.
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( )t t t= +- - - . 7d gr gt
1 1 1

All τd, τgr, and τgt are positive.
Moreover, considering the standard definition of theQ-factor of a cavity and ignoring any internal loss and

gain, the dwell time τd represents the duration required for the incident photonflux to build up the accumulated
photon density or stored energy within the barrier [13]. From the different amplitudes of excited fields at
opposite incidences shown infigure 8, we can infer that the dwell time should be directionally sensitive, as it
would take different times to build up the differentfield amplitudes. Since reciprocity is still conserved in PTBGs
[42–44], substituting

( )t t= 8gt
f

gt
b

and the result offigure 8(b)

( )t t> 9gr
b

gr
f

into equation (7), we can get

( )t t> . 10d
b

d
f

This disparity in dwell times for opposite incidences is not observed in conventional photonic barriers with
inversion symmetry. This observation raises intriguing questions that could be the subject of future
investigations. For instance, what is the precisemeaning and definition of dwell time in non-Hermitian systems
(not limited to PTBGs)? Can the dwell time explain the superluminality observed in PTBGs?How canwe
determine or calculate the dwell time in PTBGs? Are there alternative definitions of transit or lifetime that could
model the superluminality of non-Hermitian systems?We believe that addressing these open questions and
proposing potentialmathematical approaches should consider non-Hermitian quantum theory [40, 55–57].
Literature on non-HermitianHartman effects [58, 59]might also offer valuable insights. It is important to note
thatwe have only discussed superluminal reflection at the unbroken  phase.When the  phase is broken,
the concept of dwell time is not applicable.

In future we can also paymore attention to the superluminality at the broken  phase. In subsection 2.3
we verify theHartman effect, calculate the patterns of excitedfields, and prove that the superluminality at the
exact  phase is indeed tunneling. Our analysis also refutes the tunneling nature of the superluminality at the
broken  phase. The physicalmechanismbehind the superluminality at the broken  phase, that the
superluminality persists with variedN by exciting guidedmodes, is beyond our current understanding and
warrants further investigation in future studies.

Figure 8. (a)Reflection coefficient of intensityR and (b)GDR τgrwhen δ = 0.8. (c) and (d) are the distributions of normalized field
amplitude at forward and backward incidences, respectively. In the input region only the reflected fieldEr is displayed. The curve of
GDT τgt is displayed in (b) as purple line. Insets are zoomed view of the curves, and the configurations of forward and backward
incidences, respectively.
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Note that this work is theoretical, and the parameters have been chosen to simplify, condense, and illustrate
our analysis. The results presented here can be applied to other harmonic waves, including but not limited to
polaritons and phonons (acoustic waves). To implement our proposal experimentally, onemust findways to
precisely control the spatial distributions of refractive index and gain/loss (not only their periods but also their
amplitudes). Numerous important review articles [8–12, 60, 61] have explained the state-of-the-art
experimental advancements in  symmetry within photonic lattices, photonic crystals, andmetasurfaces/
metamaterials.We also note that Benisty et al have recently provided insights into device design rules for
 -symmetric gratings operating at 1550nm [62]. Formore detailed information about the advancement of
PTBGs in experiments, we refer readers to this literature [62] and the references therein.

Moreover, we acknowledge that experimentally observing superluminality is challenging due to the small
relative advancement of a light pulse compared to its width [4, 13]. Applying similar experimental techniques to
PTBGs presents additional challenges because the initially low transmission of tunnelingmay be further
reduced, potentially causing the loss of important phase information. However, since superluminality can also
be observed from the reflection spectra, whosemagnitudeR ismuch larger thanT, we can focus onmeasuring
this aspect. The superluminality of reflection also has a tangible impact on building high-Q resonators. Studying
this phenomenon could enhance our understanding of the formation of resonantmodes in PT resonators and
drive advancements in the applications already achievedwith traditional Bragg gratings.

4. Conclusion

In summary, we study how the superluminal transmission and reflection effects of PTBGs behave in both exact
and broken phases of  symmetry.We demonstrate that the superluminality of transmission is observable
evenwhenT is very large, while the superluminality of reflection is sensitive to the direction of incidence. Based
on theHartman effect and the distribution offields inside PTBGs, we argue that the observed superluminality
can be explained by considering three factors: the different amplitudes of excited fields inside PTBGs, the
associated dwell times at opposite incidence, and the reciprocity of transmission. This study provides unique
insights into themechanisms of superluminality and group delay of light in non-Hermitian open systems. It also
contributes to the advancement of PTBGs, whichmay eventually become an indispensable platform for probing
some of the exotic properties of optical wave phenomena and light–matter interactions.
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