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Abstract

Parity-time (P7 ) symmetric Bragg gratings (PTBGs) possess unique features compared to traditional
ones. For example, the photonic bandgap of a PTBG can be modified and even closed when the P7°
symmetry evolves from an exact phase to a broken one, and the complex reflection coefficient of a
PTBG is sensitive to the direction of incidence. In this article, we reveal how the superluminal effects of
transmission behave following the modified band structure of PTBGs. The superluminality of the
directionally sensitive reflection is also discussed. We then investigate the Hartman effect and argue
that, to account for the superluminal effects in PTBGs, a directionally sensitive dwell time should be
applied. This study offers unique insights into the mechanisms of superluminality and group delay of
light in non-Hermitian open systems and contributes to the advancement of PTBGs, which can
eventually become an indispensable platform for probing some of the exotic properties of optical wave
phenomena and light—matter interactions.

1. Introduction

The faster-than-c superluminal effect is an interesting topic of investigation because it seemingly violates
Einstein’s theory of special relativity and the principle of causality, which states that the speed of any signal
cannot exceed the velocity of light ¢ [ 1-7]. Various mechanisms of optical superluminality have been proposed
and verified, including the propagation of light pulses in media with either gain-induced abnormal dispersions
or negative indexes [4—6], in photonic time crystals where the refractive index oscillates periodically in time [ 7],
and the tunneling through opaque barriers or photonic bandgaps (PBGs) [ 1-3].

Recentadvancements of parity-time (P7") symmetry [8—12] provide a new avenue for investigating the
superluminal tunneling effect of light. Considering a traditional passive Bragg grating (i.e. one-dimensional
photonic crystals) in which the real part n, of the refractive index n varies periodically in space. In the dispersion
curves of such a grating, certain PBGs emerge, which prohibit the propagation of any modes and result in strong
reflection of incident fields. These properties make passive Bragg gratings valuable for constructing high-Q
resonators, which serve as indispensable platforms for probing some exotic properties of optical wave
phenomena and light-matter interactions. Furthermore, the tunneling process through a PBG has been shown
to be superluminal, meaning that the group delay of transmission (GDT) 7, is shorter than the background
group delay 7, required for traversing the same distance directly [3, 13—-16]. The principle of causality is argued
to be preserved in this process because the tunneling coefficient is very weak, and the signal or message is
primarily held by the reflected field [13].

The presence of P7 symmetry significantly alters the characteristics of PBGs. In P7 -symmetric Bragg
gratings (PTBGs), both the real component 1, and the imaginary component #; of the refractive index
n = n, + jn;are modulated periodically in space. The modulation periods d of n, and n; are equal, but their peaks
are shifted by a quarter of d, rendering the structure no longer inversion symmetric (see figure 1). The
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Figure 1. Schematic of the PTBG configuration under investigation. We are interested in the transmission and reflection features of
the 1st PBG. Inset depicts the forward incidence.

modulation in #; can modify the widths of PBGs and even close them when crossing exceptional points (EPs)
[8—12], triggering a phase transition from the unbroken 7 phase to the broken one [17-20]. The modified
PBGs of PTBGs offer a range of interesting applications, including the realization of unidirectional invisibility
[21-25], the construction of single-mode lasers [26—28], and the generation of power oscillations [29-31]. In
addition, inhomogeneous [32] and nonlinear PTBGs [33, 34], along with various nonlinear effects such as
bistability [35], instability [36], and solitons [37, 38], have also been investigated. As the width of a PBG dictates
certain characteristics of tunneling, this article focuses on the associated superluminal effect in PTBGs. Although
superluminal aspects of P7 systems have been explored by other research groups [39-41], to the best of our
knowledge, the specific topic addressed in this article has not been previously reported.

Furthermore, it has been argued that the reflection associated with tunneling through a barrier ora PBG s
also superluminal (see [13] and references therein). For a symmetric barrier, the group delay of reflection (GDR)
Tgrequals the group delay of transmission (GDT) 7, [13]. However, PTBGs differ from ordinary ones in several
aspects. For example, although gain-loss elements alone or P7 symmetry cannot induce nonreciprocal
transmission without the presence of time-reversal symmetry breaking factors such as nonlinearity, magnetic
fields, or time-modulation [42—44], the magnitude of reflection from a PTBG is sensitive to the direction of
incidence [8, 9, 21-26, 42—44]. The reflection coefficient of intensity from a PTBG can even exceed unity because
the system is non-Hermitian and energy is not conserved within it. These features are absent in ordinary passive
structures. Since the reflection from a PBG also exhibits superluminal characteristics [13], PTBGs provide an
opportunity to examine and challenge many well-known conclusions about the superluminality of light and the
principle of causality.

In light of the above considerations, this article focuses on the superluminal effects in PTBGs. We investigate
how the delay times (7, and 7,,) vary with the adjustable PBG at different P7 phases. The underlying physical
mechanism is briefly explored using the Hartman effect [45-50] and the concept of dwell times [ 13]. This study
aims to contribute to our understanding of the longstanding paradox of superluminality, highlight the
advantages of P7 symmetry, and advance the development of PTBGs for various important applications.

2. Method and analysis

2.1. Photonic band structure and superluminality in the exact P7 phase

The structure of a PTBG is shown in figure 1. The growth direction of the multilayer is x, and the forward
(backward) incidence represents the case that the input field comes from the left (right) and propagates toward
the +x (—x) direction. Media inside the structure are nonmagnetic, so only the dielectric constant ¢ varies
periodically. To ensure the P7 symmetry of n(x) = n*( — x) [8, 9], we can define the distribution of 1 inside a
unit cell within —0.5d < x < 0.5d by
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m, + Al — j§), —0.5d < x < —0.25d,
np — A +j6), —0.25d < x <0,

n(x) = . (1)
ny, — Al — j), 0 < x < 0.25d,

ny + A(l +j6), 0.25d < x < 0.5d,

with n(x + d) = n(x), dis the period. Here n,, is the background index of refraction in PTBG, A and A are the
amplitudes of modulation in n, and n;, respectively. All these parameters are real. In our study we set n,, = 1.5
and A = 0.1, and change the variable 6 to see how the photonic band structure, the complex coefficients of
reflection and transmission, and the superluminality vary with the P7” symmetry. Since we are interested in
free-standing PTBGs, the input and output regions are assumed to be vacuum with n; = 1. In experiments, the
PTBG structures can also be fabricated in certain substrates, e.g. in fiber Bragg gratings with n, = n;, outside the
gratings [8, 9,22, 23, 32]. However, different choices of n, would not modify the physics of the superluminal
tunneling discussed in this article.

The optical fields inside PTBGs can be analyzed by solving the Helmholtz equation [19, 22, 28], and the
modulation in # would couple the forward and backward waves together [22, 23, 33, 34]. Considering the
layered configuration of PTBGs shown in figure 1, with the step-like modulations in both 7, and n; given by
equation (1), we would use the semi-analytical approach of transfer matrix method (TMM) [19, 22, 23, 28] to
study the transmission/reflection spectra and the associated field distributions throughout this article. In the
TMM approach, each unit of PTBG can be divided into four layers. The thickness of each layer is d/4, with a
complex index of refraction # given by equation (1). At a given angular frequency w, the field inside the m-th
layer is expressed by a sum of forward ( f) and backward (b) propagating waves, e.g.

Elmi(x, t) = E}’”} exp(k, x + jwt) + Ebm} exp(—jk,x + jwt) for a transverse electrical mode, where
k, = nw/c. The fields between two adjacent layers (m and m + 1) are related by a transfer matrix M [19, 22, 23]

E]{fm_H} B ]VIH ]\/112 E}rm} ,
Eém-ﬁ—l} B [MZI M22:| E;m} . 2)
The transfer matrix M, of the whole PTBG can be found by a sequence of matrix multiplications from the region
of input to the region of output. The complex coefficients of reflection r and transmission t are rigorously defined
from M, byr=— M,(2,1)/M,(2,2)and t = M,(1, 1) + rM,(1, 2). The TMM approach can also give the
dispersion of the photonic band structure. Considering the unit cell shown in figure 1, once the matrix M,, of this
unit is found, the dispersion relation (w, k) can be determined from the eigen-solutions of M,, by
exp(—jkd) = eig(M,)[19, 37], where |k| < kppe, kppc = 7/d is the reduced wavevector at the Brillouin
zone edge.

By using TMM we first calculate the dispersion relation (w, k) of PTBGs. The band structures at different §
values are shown in figure 2. Note that the 11 — th PBG is mainly formed by the coupling between the
k = &+ mkppg plane-wave components mediated by the Fourier component off,,, in
n(x) = my + 3, .of,, exp(—j2mkppgx), and here we only pay attention to the 1st PBG because the magnitude
of f; is much larger than the other components f,,,., ;. Characteristics of the calculated PBG agree well with the
prediction by using the plane-wave expansion (PWE) method that requires a Fourier expansion of e ' [51]. In
the PWE method we need to solve the Helmholtz equation of ¢ ' (x)0”Epyy/0x> 4+ w*Epwe/c* = 0, where
Epwg = >, Em exp(—jkx — jmkpp.x + jwt), misaninteger[19, 22,28, 51]. Because the modulation in n is
very weak compared to the background 1, the lowest three components of ¢~ are given by
ao + ay exp(—j2kppgx) + a_ exp(+j2kppcx), where ag = n, %, a, = —2n, >A(1 — 6),and
a_ = —2m, A(1 + 6). The first PBG is realized at the wavevector k = kp, primarily consisting of
E, = Eyexp(—jkppx + jwt)and E_ = E_; exp(4jkpp.x + jwt) within Epyyg, because their wavevectors have
the same magnitudes and they are w-degenerate before coupling. Only retaining these two components, and
substituting ' into the Helmholtz equation, we can find that the 1st PBG is determined by solving
lag, ay; a_, agllE,, E_]" = (w/ckppg)*[E., E_]". Central point of this PBG is wppg = ckpsg/np = 2.094c/d,
and thewidthis A = wpggAV1 — 62 / n, . PWE predicts that an increased 6 would reduce the width A, and an
EPisachieved at = 1 where A = 0. When 6 > 1 the system should enter the broken P7 phase [17-19].

As demonstrated in figure 2, the magnitude of ¢ significantly impacts the width A of the first PBG, in
agreement with the prediction of PWE. When compared to the case with § = 0, the introduction of anon-zero §
results in a decrease in the PBG’s size. When ¢ = 0.9963 (slightly less than one because other Fourier
components of £ ', though very small, still contribute to the formation of PBGs), an EP is reached. At this point,
the dispersion curves exhibit linear dependence and coalesce at the band edge kppg, as shown in figure 2(c). PBG
is closed in this case. With further increases in 6, the P7 phase breaks down near the band edge. The lower
(upper) branch retains a super (sub)-linear dependence, as illustrated in the zoom-in inset of figure 2(d). It is
important to emphasize that the dispersion curves presented in figure 2 are obtained by scanning the solutions
of exp(—jkd) = eig(M,)[19, 37] at different real w values. Consequently, aloop of non-zero Im { k} within PBG
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Figure 2. Dispersion curves (w, k) of PTBGs at different ¢ values. Only the 1st PBG at wppg = ckppg/ny = 2.094c/d s displayed. (a)
Inside PBG only nonzero- Im { k} solutions (purple dashed lines) can be found. (b) when § increases, the width A of PBG decreases,
and finally coalesces into an EP. Inset shows a zoom-in illustration of how the dispersion curves transform from the linear dependence
in (¢) to the sub- or super-linear dependence in (d).

of the unbroken P7 phase is obtained, similar to [37]. This Im {k} loop yields two solutions at a given w. The
two solutions are opposite to each other: the one with Im {k} < 0 represents an evanescently decaying mode,
while the one with Imm {k} > 0 represents an evanescently growing mode [37]. In PBGs we could only excite the
Im{k} < 0 mode, which plays a crucial role in the tunneling process. Furthermore, TMM cannot find the loop
ofnon-zero Im {w} in the broken P7 phase [37], hence this loop is not depicted in figure 2(d). To identify this
Im {w}-loop, other methods need to be employed by keeping a real value of k and scanning the complex
solutions of w, such as the one proposed in [37]. In experimental settings, real wis always preferred and easily
achievable. To experimentally access the region of non-zero Im {w}, state-of-the-art techniques for complex
frequency waves can be utilized, as detailed in [52—54] and references therein. It’s essential to remember that the
band structure shown in figure 2 applies only to infinitely large structures. It is used to explain the main features
in the transmission and reflection spectra, such as PBGs with T = 0. For finite-thickness PTBGs, the scattering of
the field inevitably involves complex modes associated with the boundaries of PTBGs, which cannot be
explained solely by the photonic band structure.

After analyzing the variation of PBG versus 6, we then pay attention to the transmission spectra of PTBGs.
The associated transmission coefficient of intensity T = |¢|> and the relative group delay A, can be found by using

Ay = Tgt — Tgbs (3

where t = [t| exp(—j#,), the GDT 7, and the background delay 7, are defined by

0
Tgt == 8¢:)t > (4)
o( Re{kn,}dz)
= X — )

When dispersion in 1, is ignored, 7, = 7,Nd/cin a N-period PTBG. Superluminality requires A, < 0, that 7, is
shorter than the directly propagating time 7,.

Figure 3 illustrates the transmission characteristics of PTBGs with N = 80 forbothd =0and 6 = 0.8. A
region of tunneling can be observed, and its position aligns well with the 1st PBG. For instance, when § = 0, the
1st PBG falls within the angular frequency (w) interval of 2.0072 to 2.1826 in units of ¢/d, and the region of
T < 0.1 spans from 2.0043 to 2.1845. When ¢ increases to 0.8, the 1st PBG shifts to the range 2.004 33 to 2.1465,
while the region with T < 0.1 now extends from 2.0385 to 2.1495. It is evident that PBG plays a crucial role in
defining the tunneling region. Correspondingly, the relative group delay A, also drops below zero within these
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Figure 3. (a), (b) Transmission coefficient of intensity T and (c), (d) the relative group delay A, when (a), (c) § = 0 (traditional Bragg
grating) and (b), (d) 6 = 0.8 (exact PT phase), respectively. Here N = 80. The insets provide a close-up view of the curves at the long-
wavelength side of PBG or tunneling region, with the y-axis limits matching those of the respective main figures.

regions, providing evidence of superluminal tunneling, as previously reported in [ 13]. Notably, superluminal
phenomena are also observable beyond the PBG-assigned tunneling region (as shown in the insets of figure 3).
However, these occurrences are relatively feeble and exhibit high vulnerability to the parameter N, in contrast to
those observed within the PBG range.

2.2. Superluminality in the broken P7 phase

With further increases in ¢ values, portions of the band dispersion exhibit EPs and even abroken P7 phase, as
depicted in figures 2(c) and (d). The transmission characteristics in these scenarios are investigated and
presented in figure 4.

Figure 4 reveals that as we approach EP and enter the broken P7 phase, the initial null transmission
observed within PBG disappears. The value of T moves away from zero, which is directly related to the vanishing
PBG of PTBGs shown in figure 2(d). Additionally, sharp transmission peaks emerge, with amplitudes that can
significantly exceed unity. This indicates the presence of amplified transmission, consistent with [21-23]. Such a
T > 1 effect can be intuitively explained by the non-Hermitian nature of PTBGs, where energy is not conserved.
The incident field excites certain complex modes, whose amplitudes increase with the propagation distance x
and eventually dominate the transmission.

We also investigate the relative group delay A, in these scenarios and present the results in figures 4(c) and
(d). Remarkably, we observe that superluminality is still achievable in the broken P7” phase and at EP. As
previously mentioned, our focus is typically on the superluminality of optical tunneling, where T'is near zero,
and only a very small fraction of photons survive the tunneling process through the barrier. The results displayed
in figure 4 suggest that tunneling is not the only mechanism for achieving superluminality.

The significance of the results shown in figure 4 lies in their demonstration that superluminality can be
observed even when the transmission efficiency is high (T > 1). Consequently, the superluminal effect in PTBGs
is potentially easier to observe compared to traditional Bragg gratings or barriers with T < < 1. Note that
superluminality has been shown to be supported in gain media with abnormal dispersion [5, 13]. In the present
study, we do not consider any abnormal dispersion in #, implying that the observed superluminality must be
associated with the real wavevectors of guided modes within PTBGs. To support this claim, we can refer to the
Hartman effect, which will be discussed in the next section.

Before proceeding to the next section, it is worthwhile to verify the concept of unidirectional invisibility at
EP[22,23, 32]. It is well-known that while the transmission T'ina P7 symmetric structure is independent of the
direction of incidence, the reflection exhibits directional sensitivity, meaning that Ry R, where fand b
represent the forward and backward incidence, respectively. Unidirectional invisibility refers to the extreme
wave phenomenon at EP, where T = 1 and either Ry= 0 or R, = 0, but not both [22, 23, 32]. However, this effect
strictly requires that the input/output regions and PTBG share the same background refractive index #y, such as




I0OP Publishing Phys. Scr. 99 (2024) 085544 L-TWuetal

8| (a) EP (b) 3=1.2

[T—

(d) =12

40 -
0
@Wppc—, superlumin e

-80- 21 23 21 23

o (c/d) o (c/d)

Figure 4. (a), (b) Transmission coefficient of intensity T and (c), (d) the relative group delay A, when (a), (c) § = 0.9963 (EP) and (b),
(d) 6 = 1.2 (broken PT phase), respectively. Here N = 80.
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Figure 5. (a) Transmission and (b) reflection spectra of forward and backward incidences at EP. In order to observe an unidirectional
invisibility at wppg, the refractive indexes in the input and output regions are set to be n; = n, = 1.5. Note that the transmission is
reciprocal so only a single curve of T'is displayed in (a).

in fiber Bragg gratings [22, 23, 32]. By setting the refractive indices in the input and output regions to

ny=n, = 1.5 instead of 1, we perform TMM simulations again and verify the existence of this phenomenon.
Figure 5 presents the calculation results under this condition for N = 80. A perfect unidirectional invisibility is
now achieved because T'= 1 and Ry, is nearly zero at wpp (see green stars in figure 5).

2.3. The Hartman effect

Hartman analyzed the temporal aspects of tunneling and discovered that the delay time becomes independent of
the barrier thickness and eventually saturates for very thick barriers [45—47]. The Hartman effect demonstrates
that the delay in tunneling is not a transit time but a lifetime, with its origin being the saturation of stored energy
when the barrier length exceeds the decay length [13]. Therefore, by utilizing the Hartman effect, we can
determine which effect dominates transmission in PTBGs: the transit time of a decaying mode or the
propagation of guided waves with real k.
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Figure 6. GDT 7, when (a) § = 0.8 where P7 symmetry is conserved, and when (b) § = 1.2 where the P7 phase is broken,
respectively, for different numbers N of periods. Hartman effect exists only in (a).

The GDT 7, defined in equation (4) can be used to verify the Hartman effect. Figure 6 illustrates the
variations of 7, versus w at different numbers of periods N'in both the unbroken (6 = 0.8) and broken P7 phase
(6 = 1.2). From figure 6(a), we observe that the value of 7, at wpp; remains a constant and does not change with
the thickness Nd of PTBGs. The presence of the Hartman effect in figure 6(a) indicates that PTBGs now function
as opaque barriers. The wavevector k of the excited mode is purely imaginary, and the field decays exponentially
away from the input interface.

When the P7 phase is broken, such as when § = 1.2 as shown in figure 6(b), the Hartman effect is no longer
observed. While the 7, curve exhibits a dip at w = wppg, its value is no longer constant for different values of N.
Considering that T'is also no longer zero in this case (see figure 4), we can conclude that this dip in 7, (and in T)
is not associated with a real PBG. Indeed, as indicated by the band structure in figure 2(d), the incident field at
w = wppc can always excite modes with non-zero Re {k}. This would preclude the Hartman effect because now
the propagation effect of guided modes contributes to the transmission process.

To corroborate the above analysis, we calculate the field distributions within PTBGs. The results for the
incidence of w = wppgat d = 0.8 and 6 = 1.2 are presented in figure 7. Two different grating thicknesses, namely
N = 80and 120, are considered. Figures 7(a) and (c) show that when § = 0.8, where the P7 phase is conserved,
the fields inside PTBGs decay monotonically away from the input interface. Once the PTBG length Nd exceeds
the decay length, any further increase in N does not alter the amplitude and pattern of the field within the
structure. This demonstrates that the transmission process is analogous to the tunneling through an opaque
barrier. This N-independent distribution of the evanescent field is precisely the key feature of the Hartman effect
[13,45-47].

However, a completely different scenario emerges when the P7 phase is broken. As evident from
figures 7(b) and (d), the field inside the grating is no longer evanescently decaying, and a few oscillating periods
can be observed. This indicates that modes with Re {k} = 0 are excited. Notably, the field envelope now
undergoes a long-wavelength modulation. This resembles the formation of Moire patterns through the
interference among multiple modes with slightly different real wavevectors k. Unlike figures 7(a) and (c), with
increased grating length Nd, the field pattern shifts along with the output interface. The maximum amplitude of
the field within the structure also changes, but the period of the long-wavelength modulation remains constant.
Comparing these observations to figures 7(a) and (c), the absence of the Hartman effect in this broken-P7
phase can be readily explained, that the excited mode no longer decays purely and the transmission process
primarily involves resonant propagation.

2.4. Direction-sensitive superluminal reflections
In the preceding analysis, we have demonstrated that PTBGs provide a versatile platform for manipulating and
investigating the superluminal effect of optical tunneling. Now, we aim to address another crucial question: how
do the superluminality manifest itself in the reflection spectra? Notably, in the study of superluminality,
researchers have observed that for a symmetric barrier, the delay times in the transmission and reflection spectra
are identical, meaning that 7, = 7, [13]. However, for aPTBG, the reflection coefficient ris sensitive to the
direction of incidence [8, 9], implying that this coincidence must be broken.

For this purpose we calculate the reflection coefficient of intensity R = |r|*, where r = |r| exp(—j¢,), and the
associated delay (GDR) 7, defined by
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Results for § = 0.8 and N = 80 are shown in figure 8. Both forward (blue) and backward (red) incidences are
calculated. For comparison, the curve of GDT 7, is also displayed alongside those of 7, as a purple line.

Consistent with the literature on directionally sensitive reflection [8, 9], we observe that Rrand R;, may have
different values. Within PBG we get Ry > R;,. The maximum value of Rrexceeds one at wppg, which is a non-
Hermitian signature of PTBGs. Regarding GDR 7, at wppg all values are smaller than the background delay 74,
similar to that of GDT. Associated with the asymmetric reflection, GDR also becomes directionally dependent.
GDR of the forward incidence (blue line) is smaller than that of the backward incidence (red line). In figure 8(b),
we also display the curve of GDT 7,,. Since transmission is independent of the direction of incidence according
to the principle of reciprocity, only a single curve of GDT is shown here. From figure 8(b), we can see that 7,
briefly overlaps with the forward GDR 7.

The difference in GDR must be associated with the direction-sensitive excited field (especially the
amplitude) inside PTBGs. We calculate the field distributions at wppg for both forward and backward
incidences, and show them in figures 8(c) and (d). We observe that although the decay lengths are identical in
these two cases, the excited field is indeed sensitive to the direction of incidence. The amplitude of the excited
field for forward incidence is larger than that for backward incidence, resulting in R¢> R,

3. Discussion

The simulations and analysis presented above confirm the existence of superluminality in both the reflection
and transmission spectra of PTBGs. However, the group delay of reflection can exhibit different values for
opposite incidences. The mechanism of superluminality of the directionally sensitive reflection warrants a brief
discussion here.

Focusing on the scenario of conserved P7” symmetry, Winful [13] argued that the group delay in tunneling
should represent a lifetime rather than a transit time because k is purely imaginary. For electromagnetic pulses,
the group delay corresponds to the lifetime of stored energy leaking out from both ends of the barrier. Since the
lifetime is averaged over all incoming fields, regardless of whether they are ultimately transmitted or reflected, to
be consistent with the literature [ 13, 48-50], the dwell time 7, should be expressed as
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Figure 8. (a) Reflection coefficient of intensity R and (b) GDR 7, when 6 = 0.8. (c) and (d) are the distributions of normalized field
amplitude at forward and backward incidences, respectively. In the input region only the reflected field E, is displayed. The curve of
GDT 7 is displayed in (b) as purple line. Insets are zoomed view of the curves, and the configurations of forward and backward
incidences, respectively.

T =T+ Ty )

All 74, T4y, and 74 are positive.

Moreover, considering the standard definition of the Q-factor of a cavity and ignoring any internal loss and
gain, the dwell time 7, represents the duration required for the incident photon flux to build up the accumulated
photon density or stored energy within the barrier [13]. From the different amplitudes of excited fields at
opposite incidences shown in figure 8, we can infer that the dwell time should be directionally sensitive, as it
would take different times to build up the different field amplitudes. Since reciprocity is still conserved in PTBGs
[42—44], substituting

Tﬁt = th 8)
and the result of figure 8(b)

Ti’,, > T£, )
into equation (7), we can get

TZ > 7'5 . (10)

This disparity in dwell times for opposite incidences is not observed in conventional photonic barriers with
inversion symmetry. This observation raises intriguing questions that could be the subject of future
investigations. For instance, what is the precise meaning and definition of dwell time in non-Hermitian systems
(not limited to PTBGs)? Can the dwell time explain the superluminality observed in PTBGs? How can we
determine or calculate the dwell time in PTBGs? Are there alternative definitions of transit or lifetime that could
model the superluminality of non-Hermitian systems? We believe that addressing these open questions and
proposing potential mathematical approaches should consider non-Hermitian quantum theory [40, 55-57].
Literature on non-Hermitian Hartman effects [58, 59] might also offer valuable insights. It is important to note
that we have only discussed superluminal reflection at the unbroken P7 phase. When the P7 phase is broken,
the concept of dwell time is not applicable.

In future we can also pay more attention to the superluminality at the broken 7 phase. In subsection 2.3
we verify the Hartman effect, calculate the patterns of excited fields, and prove that the superluminality at the
exact P7 phaseisindeed tunneling. Our analysis also refutes the tunneling nature of the superluminality at the
broken PT phase. The physical mechanism behind the superluminality at the broken P7 phase, that the
superluminality persists with varied N by exciting guided modes, is beyond our current understanding and
warrants further investigation in future studies.

9
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Note that this work is theoretical, and the parameters have been chosen to simplify, condense, and illustrate
our analysis. The results presented here can be applied to other harmonic waves, including but not limited to
polaritons and phonons (acoustic waves). To implement our proposal experimentally, one must find ways to
precisely control the spatial distributions of refractive index and gain/loss (not only their periods but also their
amplitudes). Numerous important review articles [8—12, 60, 61] have explained the state-of-the-art
experimental advancements in P7 symmetry within photonic lattices, photonic crystals, and metasurfaces/
metamaterials. We also note that Benisty et al have recently provided insights into device design rules for
PT -symmetric gratings operating at 1550nm [62]. For more detailed information about the advancement of
PTBGs in experiments, we refer readers to this literature [62] and the references therein.

Moreover, we acknowledge that experimentally observing superluminality is challenging due to the small
relative advancement of a light pulse compared to its width [4, 13]. Applying similar experimental techniques to
PTBGs presents additional challenges because the initially low transmission of tunneling may be further
reduced, potentially causing the loss of important phase information. However, since superluminality can also
be observed from the reflection spectra, whose magnitude R is much larger than T, we can focus on measuring
this aspect. The superluminality of reflection also has a tangible impact on building high-Q resonators. Studying
this phenomenon could enhance our understanding of the formation of resonant modes in PT resonators and
drive advancements in the applications already achieved with traditional Bragg gratings.

4, Conclusion

In summary, we study how the superluminal transmission and reflection effects of PTBGs behave in both exact
and broken phases of P7 symmetry. We demonstrate that the superluminality of transmission is observable
even when T'is very large, while the superluminality of reflection is sensitive to the direction of incidence. Based
on the Hartman effect and the distribution of fields inside PTBGs, we argue that the observed superluminality
can be explained by considering three factors: the different amplitudes of excited fields inside PTBGs, the
associated dwell times at opposite incidence, and the reciprocity of transmission. This study provides unique
insights into the mechanisms of superluminality and group delay of light in non-Hermitian open systems. It also
contributes to the advancement of PTBGs, which may eventually become an indispensable platform for probing
some of the exotic properties of optical wave phenomena and light-matter interactions.

Acknowledgments

This work was supported by the Natural National Science Foundation of China (NSFC) (12104203, 12104227,
12274241), the Scientific Research Foundation of Nanjing Institute of Technology (YKJ202021), and the Jiangxi
Double-Thousand Plan (No. jxsq2023101069).

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

ORCID iDs

Tian-Jing Guo ® https://orcid.org/0000-0001-8495-0051
Jing Chen @ https://orcid.org/0000-0001-5637-1829

References

[1] Winful H G 2003 Phys. Rev. Lett. 90 023901
[2] Buttiker M and Washburn S 2003 Nature 422 271
[3] LonghiS, Marano M, Laporta P and Belmonte M 2001 Phys. Rev. E 64 055602
[4] WangL]J, Kuzmich A and Dogariu A 2000 Nature 406 277
[5] Boyd RW and Gauthier D ] 2009 Science 326 1074
[6] Bashir A1, Batool S U, Arif A and Shazad A 2023 Phys. Scr. 98 115116
[7] PanY, Cohen M Iand Segev M 2023 Phys. Rev. Lett. 130 233801
[8] FengL,El-Ganainy Rand Ge L2017 Nat. Photo. 11 752
[9] El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S and Christodoulides D N 2018 Nat. Phys. 14 11
[10] CaoH and Wiersig] 2015 Rev. Mod. Phys. 87 61
[11] Ozdemir SK, Rotter S, Nori F and Yang L 2019 Nat. Mater. 18 783
[12] MiriM A and Alu A 2019 Science 363 42

10


https://orcid.org/0000-0001-8495-0051
https://orcid.org/0000-0001-8495-0051
https://orcid.org/0000-0001-8495-0051
https://orcid.org/0000-0001-8495-0051
https://orcid.org/0000-0001-5637-1829
https://orcid.org/0000-0001-5637-1829
https://orcid.org/0000-0001-5637-1829
https://orcid.org/0000-0001-5637-1829
https://doi.org/10.1103/PhysRevLett.90.023901
https://doi.org/10.1038/422271a
https://doi.org/10.1103/PhysRevE.64.055602
https://doi.org/10.1038/35018520
https://doi.org/10.1126/science.1170885
https://doi.org/10.1088/1402-4896/acff4f
https://doi.org/10.1103/PhysRevLett.130.233801
https://doi.org/10.1038/s41566-017-0031-1
https://doi.org/10.1038/nphys4323
https://doi.org/10.1103/RevModPhys.87.61
https://doi.org/10.1038/s41563-019-0304-9
https://doi.org/10.1126/science.aar7709

10P Publishing

Phys. Scr. 99 (2024) 085544 L-TWuetal

[13] Winful H G 2006 Phys. Rep. 436 1

[14] D’Aguanno G, Centini M, Scalora M, Sibilia C, Bloemer M J, Borden C M, Haus ] W and Bertolotti M 2001 Phys. Rev. E 63 036610
[15] Steinberg AM and Chiao RY 1995 Phys. Rev. A51 3525

[16] Spielmann Ch, Szipocs R, Stingl A and Krausz F 1994 Phys. Rev. Lett. 73 2308

[17] Makris K G, El-Ganainy R, Christodoulides D N and Musslimani Z H 2008 Phys. Rev. Lett. 100 103904
[18] Zheng M C, Christodoulides D N, Fleischmann R and Kottos T 2010 Phys. Rev. A82 010103

[19] DingK, Zhang Z Q and Chan C T 2015 Phys. Rev. B92 235310

[20] ZhangXZ, WuL T, Luo R Z and Chen] 2023 Phys. Scr. 98 095511

[21] LonghiS2010 Phys. Rev. A 81022102

[22] LinZ, Ramezani H, Eichelkraut T, Kottos T, Cao H and Christodoulides D N 2011 Phys. Rev. Lett. 106 213901
[23] Mostafazadeh A 2013 Phys. Rev. A87 012103

[24] Keshmarzi EK, Tait RN and Berini P 2016 Appl. Phys. A 122279

[25] Lazo Eand Humire F R 2023 Phys. Scr. 98 035028

[26] PengR,LiY and Huang W 2018 J. Light. Tech. 36 4074

[27] Hao T and Berini P 2022 Opt. Express 30 5167

[28] Huang CY, Zhang R, Han] L, ZhengJ and Xu ] Q 2014 Phys. Rev. A 89 023842

[29] Brandao P A and Cavalcanti S B 2017 Phys. Rev. A 96 053841

[30] Boucher Y G and Feron P 2019 IEEE ] Quan. Elect. 55 6000209

[31] ChenZ]J, Wang HD, Luo B and Guo H 2014 Opt. Express 2225120

[32] Vignesh Raja S, Govindarajan A, Mahalingam A and Lakshmanan M 2020 Phys. Rev. A101 033814
[33] XuYL,FengL, LuM Hand Chen Y F 2014 IEEE Photonics J. 6 0600507

[34] Vignesh Raja S, Govindarajan A, Mahalingam A and Lakshmanan M 2019 Phys. Rev. A 100 053806
[35] Phang S, Vukovic A, Susanto H, Benson T M and Sewell P 2014 Opt. Lett. 39 2603

[36] Sarma AK 2014 JOSAB31 1861

[37] AliMiri M, Aceves A B, Kottos T, Kovanis V and Christodoulides D N 2012 Phys. Rev. A 86 033801
[38] Gupta SKand Sarma A K 2014 Europhys. Lett. 105 44001

[39] Szameit A, Rechtsman M C, Bahat-Treidel O and Segev M 2011 Phys. Rev. A 84021806

[40] LeeY C, Hsieh M H, Flammia S T and Lee R K 2014 Phys. Rev. Lett. 112 130404

[41] Bender CM, Brody D C, Jones H F and Meister B K 2007 Phys. Rev. Lett. 98 040403

[42] PengB, Ozdemir SK, Liertzer M and Yang L 2016 PNAS 113 6845

[43] Caloz C, Alu A, Tretyakov S, Sounas D, Achouri K and Deck-Leger Z-L 2018 Phys. Rev. Appl. 10 047001
[44] Guo Cand Fan S2022 Phys. Rev. Lett. 128 256101

[45] Hartman T E 1962 J. Appl. Phys. 33 3427

[46] OlkhovskyV Sand Recami E 1992 Phys. Rep. 214 339

[47] Winful H G 2002 Opt. Express 10 1491

[48] Buttiker M 1983 Phys. Rev. B27 6178

[49] Leavens CRand Aers G C 1989 Phys. Rev. B39 1202

[50] Buttiker M and Landauer R 1982 Phys. Rev. Lett. 49 1739

[51] ZhangW, Hu A, Lei X, Xu N and Ming N 1996 Phys. Rev. B 54 10280

[52] Archambault A, Besbes M and Greffet ] ] 2012 Phys. Rev. Lett. 109 097405

[53] GuanF, GuoX, ZengK, Zhang S, Nie Z, Ma S, Dai Q, Pendry J, Zhang X and Zhang S 2023 Science 381 766
[54] Kim S, PengY, Yves Sand Alu A 2023 Phys. Rev. X 13 041024

[55] Guo P, Gasparian V, Jodar E and Wisehart C 2023 Phys. Rev. A107 032210

[56] Scheuer]2018 Opt. Express 26 32091

[57] Moiseyev N 2011 Non-Hermitian Quantum Mechanics (Cambridge University Press)

[58] Hasan M, Singh V N and Mandal B P 2020 Eur. Phys. J. Plus 135 640

[59] Longhi$2022 Ann. Phys. 5342200250

[60] Yan Q, Zhao B, ZhouR,MaR, Lyu Q, Chu S, Hu X and Gong Q 2023 Nanophotonics 12 2247

[61] WangQ and ChongY D 2023 JOSAB 40 1443

[62] Benisty H, dela Perriere V B, Ramdane A and Lupu A 2021 JOSAB 38 c168

11


https://doi.org/10.1016/j.physrep.2006.09.002
https://doi.org/10.1103/PhysRevE.63.036610
https://doi.org/10.1103/PhysRevA.51.3525
https://doi.org/10.1103/PhysRevLett.73.2308
https://doi.org/10.1103/PhysRevLett.100.103904
https://doi.org/10.1103/PhysRevA.82.010103
https://doi.org/10.1103/PhysRevB.92.235310
https://doi.org/10.1088/1402-4896/aced27
https://doi.org/10.1103/PhysRevA.81.022102
https://doi.org/10.1103/PhysRevLett.106.213901
https://doi.org/10.1103/PhysRevA.87.012103
https://doi.org/10.1007/s00339-016-9832-1
https://doi.org/10.1088/1402-4896/acba50
https://doi.org/10.1109/JLT.2018.2857835
https://doi.org/10.1364/OE.450960
https://doi.org/10.1103/PhysRevA.89.023842
https://doi.org/10.1103/PhysRevA.96.053841
https://doi.org/10.1109/JQE.2019.2947566
https://doi.org/10.1364/OE.22.025120
https://doi.org/10.1103/PhysRevA.101.033814
https://doi.org/10.1103/PhysRevA.100.053806
https://doi.org/10.1364/OL.39.002603
https://doi.org/10.1364/JOSAB.31.001861
https://doi.org/10.1103/PhysRevA.86.033801
https://doi.org/10.1209/0295-5075/105/44001
https://doi.org/10.1103/PhysRevA.84.021806
https://doi.org/10.1103/PhysRevLett.112.130404
https://doi.org/10.1103/PhysRevLett.98.040403
https://doi.org/10.1073/pnas.1603318113
https://doi.org/10.1103/PhysRevApplied.10.047001
https://doi.org/10.1103/PhysRevLett.128.256101
https://doi.org/10.1063/1.1702424
https://doi.org/10.1016/0370-1573(92)90015-R
https://doi.org/10.1364/OE.10.001491
https://doi.org/10.1103/PhysRevB.27.6178
https://doi.org/10.1103/PhysRevB.39.1202
https://doi.org/10.1103/PhysRevLett.49.1739
https://doi.org/10.1103/PhysRevB.54.10280
https://doi.org/10.1103/PhysRevLett.109.097405
https://doi.org/10.1126/science.adi1267
https://doi.org/10.1103/PhysRevA.107.032210
https://doi.org/10.1364/OE.26.032091
https://doi.org/10.1140/epjp/s13360-020-00664-6
https://doi.org/10.1002/andp.202200250
https://doi.org/10.1515/nanoph-2022-0775
https://doi.org/10.1364/JOSAB.481963
https://doi.org/10.1364/JOSAB.428638

	1. Introduction
	2. Method and analysis
	2.1. Photonic band structure and superluminality in the exact PT phase
	2.2. Superluminality in the broken PT phase
	2.3. The Hartman effect
	2.4. Direction-sensitive superluminal reflections

	3. Discussion
	4. Conclusion
	Acknowledgments
	Data availability statement
	References



