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Abstract
Negative-indexmaterials (NIMs) support optical anti-parity-time (anti- ) symmetry evenwhen
they are lossless. Here we prove the feasibility in achieving higher-order exceptional points (EPs) in
lossfree waveguide arrays by utilizing the anti- symmetry induced byNIM.Numerical simulation
about a third-order EPfits well with the coupled-mode theory. A scheme of achieving fourth-order
EPs is also discussed. This work highlights the great potential ofNIM in overcoming the obstacles of
ordinary non-Hermitian optics, and the possibilities of combining anti- ,  , andHermitian
couplings for various purposes.

1. Introduction

Exceptional points (EPs) refer to the singular degeneracies of non-Hermitianwave/quantum systems [1–7],
where all the eigenvalues and the eigenvectors of the effectiveHamiltonian coalesce simultaneously. Its novel
topology enables interestingmode switching behaviors when circling around it [6–10]. Furthermore, the
coalescent eigenfunction at EPs is very sensitive to tiny perturbation in the effectiveHamiltonian, so high-
sensitivity applications [11–14] can be envisioned. The high sensitivity is also associatedwith stopped-light effect
and enhanced density of states, and can be utilized for other interesting purposes such as in realizing coherent
absorbers and lasers [15–17].

Parity-time ( ) symmetric systems [1–5], which are non-Hermitian, are thewidely utilized ones in
realizing EPs that separate the complex and real spectra regimes of theHamiltonian. Considering a system
supporting two coupled entities with distributed gain and loss, the  symmetry requires for
( )  =-PT PT1 , where is theHamiltonian, P= [0, 1; 1, 0] induces a spatial reflection and leads to a position
exchange of the two entities, andT operator leads to a time-reversal operation (calculates the complex
conjugates of all the elements in theHamiltonian) and has the effect of turning gain into loss and vice versa [18].
Since the number of coalescing eigenvalues and the eigenvectors determines the order of EPs, such a kind of
non-Hermitian systems only supports second-order EPs (EP2 for brief). Higher-order EPs, at whichmore than
two eigenvalues and eigenstates coalesce, could providemore degrees of freedom for artificially designing the
topology, increase the frequency splitting, and enhance the sensitivity further. Consequently, people have
proposedmany schemes in achieving higher-order EPs by increasing the number of subsystems in various
platforms such as photonic crystals,microcavities, lattices, resonator networks andwaveguides (WGs) [11, 12,
18–34]. However, among all the non-idealities in experiments [34], the strictly requirement of delicate balance
among the spatially distributed gain and loss is the detrimental one, which dramatically hinders the transfer of
higher-order EPs from a curiousmathematical object to realistic applications of our daily life.Ways to access
high-order EPswithout resorting to gain and loss are thus desired. Such a target is, in principle, achievable
because non-Hermitian physics coversmanymiscellaneous categories including but not limited to the 
symmetry. In addition, to achieve a non-HermitianHamiltonian, besides introducing imaginary components
(gain and loss) to the diagonal elements we can also just set the off-diagonal elements unequal. The later route
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does not require gain and loss, and thewhole energy can be conserved. A good example is the recently
demonstrated anti- symmetry [( ) ] = --PT PT1 associatedwith lossfree negative-indexmaterials
(NIMs) [35–40]. Due to the backward propagation offield inNIM, the coupling between aNIMWGand an
ordinary dielectricWG can bemodeled by an anti- Hamiltonianwith unequal off-diagonal elements, and
EP2s are shown to exist in the spectra of the guidedwaves [39, 40].

In this article, we prove the feasibility in realizing an optical third-order EP (EP3) by using the anti-
symmetry induced by lossfreeNIMs. ANIM-dielectric-dielectricWGconfiguration is utilized, which hybridizes
the anti- symmetry ofNIM-dielectricWGpair andHermitian coupling of dielectric-dielectricWGpair
together. Such a kind of configuration has not been discussed before, to the best of our knowledge. An effective
non-HermitianHamiltonian is developed by using the coupled-mode theory (CMT) in order to explain the
existence of EP3. This non-HermitianHamiltonian is different fromother approaches of high-order EPs,
because it is lossfree, and is neither  symmetric nor anti- symmetric [11, 12, 18–34]. The transfer-matrix
method (TMM) is utilized to numerically calculate eigensolutions of the guidedmodes, prove the existence of
EP3, and reveal features of it. At the end of this article we also propose a scheme of realizing a fourth-order EP
(EP4). This work proves thatNIMs and the associated anti- symmetry have great potential in the study of
non-Hermitian optics in lossfree environments for various applicable purposes.

This article is organized as follows. In section 2.1wefirstly propose themain concept of the coupled-WG
structure and the physicalmechanism of EP3 by usingCMT. In section 2.2we provide numerical calculation
and analysis about the guidedmodes by using TMM.We show that theHamiltonian fromCMTcan explain
main features of the results fromTMM, and prove the observed singular degeneracy is indeed an EP3. The
analysis also providesmore detailed information about how the eigenmodes evolve around EP3.Discussion
about the importance of this study is provided in section 3.We also present a simple scheme of achieving an EP4
in section 3. Summary ismade at the end of this article.

2. Theory and analysis

2.1. Structure, CMTand effective hamiltonian
Let us consider the structure shown infigure 1. It contains three straightWGs surrounded by air. All themedia in
this structure are lossfree. The lower twoWGs (WG2 andWG3) aremade of dielectrics with ò> 0 andμ= 1.
The topWG1 ismade of aNIMwith  < 0NIM and m < 0NIM . BecauseNIM requires an intrinsic dispersion of

( ) w w¶ ¶ > 0NIM and ( )m w w¶ ¶ > 0NIM so as to give a positive energy density [35–37, 40], in this article we
would keep the angular frequencyω0 a constant, and test the variation of thewavevectorsβ of the eigenmodes
versus a geometric parameter of the structure.

Properties of the guidedmodes inside this structure can be found by usingMaxwell’s equations, see [15,
38–40]. As discussed in [39, 40], because the total energy should be conserved in this loss-free system, and the
propagating directions of energy in theNIM and dielectricWGs are opposite to each other, the coupling
between the topNIMWG1 and the adjacent dielectricWG2 is anti- symmetric [39, 40]. As forWG2 and
WG3, their interaction can be described by using aHermitianmatrix. Only keeping the nearest-neighbor
interaction, according toCMT the hybridization of the anti- symmetric interaction and theHermitian one
can bemodeled by an effectiveHamiltonian in the formof

Figure 1. Schematic of the configuration under investigation, which contains three straight lossfreeWGs.WG1 ismade of aNIMwith
 = -3NIM and m = -0.556NIM .WG2 andWG3 aremade of dielectrics.
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whereβ is thewavevector of the eigenmode, kWGi is the resonant wavevector ofmode in separateWGi (i= 1, 2,
3), andψi represents an associated field component of it. ParameterA represents the strength of the anti-
coupling betweenWG1 andWG2, andB is theHermitian coupling strength betweenWG2 andWG3. BothA
andB are real. Note that although this effectiveHamiltonian is non-Hermitian, it is neither  symmetric
nor anti- symmetric because ( ) -PT PT1 , where P= [0, 0, 1; 0, 1, 0; 1, 0, 0], in general does not return or
- . Equation (1) generally has three solutions.Here let us assume the resonances inWG2 andWG3 are

degenerated but different from that ofWG1,

( )
d= +

= =
k k
k k k

3 ,
, 2

WG1 0

WG2 WG3 0

where the factor 3 before δ is intentionally introduced in order tomake below analysis concise. Substituting
them into equation (1) and assume

( )b d= - -y k , 30

the three solutions ofβ can be found by solving the secular equation

( )+ + =y C y C 0, 43
1 0

where the coefficients are given by

( ) ( )
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d d
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BecauseA,B, k0 and δ are all real,C0 andC1 are also real valued.
Assuming the three solutions are y1,2,3, equation (4) hasmany interesting properties such as y1+ y2+ y3= 0

and y1y2y3=− C0. A notable feature is that it can support an EP3with three identical solutions of y= 0when

( )= =C C 0. 61 0

equation (6) can be satisfied onlywhen the conditions of

( )
d =
=A B

0,

72 2

aremet simultaneously. These are the existence conditions of EP3, themain conclusion of this article.
Because parametersA andB are tunable bymanaging the distances between adjacentWGs, to gain a deep

insight about the formation of EP3 and the variation of the associated eigenvectors, let us check how the
eigensolutions vary around EP3. Substituting kWG1= kWG2= kWG3= k0 into equation (1)we can get

( ) ( )( ) ( )b b- + - - =k k A B 0. 80
3

0
2 2

Assuming all the solutions are real, we can sort them in ascending order. The solutionβ2 is between the other
two and is given by

( )b = k , 92 0

which is a constant and does not depend on the values ofA andB. The other two solutions are given by

 ( )b = -k B A , 101,3 0
2 2

which are complex (real) in the region of broken (exact) phasewhenB2< A2 (B2> A2). As for the eigenvectors,
from equation (1)we canfind



[ ]

[ ] ( )

Y =
+

-

Y = - -

A B
B A

B
A B A B

1
, 0, ,

1

2
, , , 11

T

T

2
2 2

1,3
2 2

respectively.
Once the condition ofA2= B2 is satisfied, a coalescence takes place, where all the three eigensolutions

coalesce together. This coalescent point is an EP3, and the eigensolution and eigenvector are given by
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respectively, where the function sign(x) returns 1 (−1)when x> 0 (x< 0).
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If the two conditions of equation (6) are not satisfied simultaneously, e. g. when δ≠ 0, we could not access
EP3.Now the system atmost supports an EP2.One solution ofβ is always real, and the other two solutions are
determined by
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WhenΔ= 0, the two solutions are identical and an EP2 is achieved.Whenmoving fromΔ= 0, for example, by
changing the distance between two adjacentWGs so as tomodifyA orB, the systemwould enter either the exact
or the broken non-Hermitian phase. IfΔ> 0, two complex conjugate solutions are achieved, and the system is
within the broken phase. IfΔ< 0, two real solutions with different values are found, and the system iswithin the
exact phase. In the next sectionwewould demonstrate this phenomenon.

2.2. TMMSimulation andAnalysis
The theory proposed in the above subsection is based on the effectiveHamiltonian fromCMT.When studying
the guidedmodes in coupledWGswe should still resort to some rigorously numericalmethods based on
Maxwell’s equations. Herewe use TMMto analyze the transverse-electricalmodes in the structure. In each layer
thefield is expressed as [ ( ) ( )] ( )b= + - -+ -E E jk x E jk x j zexp exp expy i i , where b m w+ =k ci i i

2 2
0
2 2, c is the

speed of light. The transmission/reflection properties of the structure are summarized by
[ ] [ ]= ME E E, 0 ,t

T
r

T
0 , whereM is the transfermatrix, E0,Et andEr are the incident, transmitted, and reflected

fields. At the top and bottom air layers surrounding theWGs,fields are required to exponentially decay away
( { } ¹Im k 0i ) so that the out-going boundary condition can bemet.Wave-guiding is satisfied by the self-
sustained condition ofM22= 0 [41] so thatEr andEt are nonzero evenwhen no incidence is present (E0= 0). In
the phase-broken regionwhereβ is complex, similar process can be utilized by scanningβ in the two
dimensional space spanned by { }bRe and { }bIm . As for the associated distributions offields, they are also
calculated by using TMMwhen the eigensolutions are found. Note that TMMcan be applied to the transverse-
magneticmodes as well by replacing Ey byHy.

The geometric and optical parameters of the structure are set as follows. The thicknesses of allWGs are 4 cm.
The distance betweenWG2 andWG3 is set to be 6 cm so thatB is a constant here. The distance a betweenWG1
andWG2,which determines the value ofA, is variable in our study.NIM is assumed to be the documented one
with  w w= -1 eNIM

2 2 and ( )m w w w= - -F1 mNIM
2 2 2 , whereωe= 2π× 10 GHz,ωm= 2π× 4 GHz, and

F=0.56 [36, 37]. Atω0= 2π× 5 GHz (a free-spacewavelength of 6 cm) the dispersion gives  = -3NIM and
m = -0.556NIM . Figures 2(a) and (c) display the spectra ofβ versus awhenWG2 andWG3 aremade of the same
dielectric of ò= 4.504. In this case kWG2= kWG3≠ kWG1 sowe could only get an EP2. From the curves we can see
the lower branchβ1 is always real, but the upper two branchesβ2 andβ3 coalesce together in forming an EP2 at
a= 7.09 cm.When a is smaller than 7.09 cm, the imaginary parts of these two branches are no longer zero, and
the non-Hermitian phase is broken.

In order to realize an EP3, we shouldfinely tune the parameters of the structure.When ò of the two dielectric
WGs aremodified by only 0.015% to 4.504 650 83, the dispersion curves aremodified sharply and an EP3 is
achieved, see figures 2(b) and (d). Now the initial lower branchβ1 coalesces with the upper two branchesβ2,3 at a
single point ac= 6.69 cm and forms an EP3.When a becomes smaller, two branches ofβ become complex. The
middle branch is always real and is almost a constant respect to a. Note that due to the coalescence at EP3, it is
impossible tofind the exact one-to-one correspondence of the complex branches at a< az to these at a> ac, so
here the branches in the region of broken phase are still labeled in ascending order of { }bIm .

Above numerical calculations are based onTMM,which is rigorous. Before discussing characteristics of EP3
we should check how theyfit with the results of CMT. To do it, we perform a bestfitting about the dispersion
curves by numerically solving equation (1).Wefirst fit the curves shown infigures 2(b) and 2(d) because they are
governed by δ= 0 and require less fitting parameters. The value of k0 is given by the numerical value of
β2= 1.325144 cm−1 obtained fromTMM.As forA andB, following [40]we assume

( )⎜ ⎟
⎛
⎝

⎞
⎠

= -
-

A B
a a

L
exp , 14c

d

where ac= 6.69 cm is the position of EP3, and Ld is the decay length. The best fitting then tellsB= 1.22× 10−3

cm−1 and Ld= 1.3 cm. From the red circles infigures 2(b) and 2(d)we can see CMTpredictsmost features of the
dispersion curves fromTMM.The onlyminor discrepancy is about { }bRe in the broken phase region, which
might befixed by considering spatial dispersion.

We then try tofit the results shown infigures 2(a) and (c). Since the only difference of them from figures 2(b)
and (d) is that the resonances inWG2 andWG3 are perturbed by the same amount, wewouldmaintain all the
parameters aboutfigures 2(b) and (d) unchanged, and only introduce a tiny perturbation to kWG2, WG3, that
kWG2= kWG3= k0+Δk. A bestfitting is achievedwhenΔk=− 1.8× 10−4 cm−1, as shown by the red circles.
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Wecan see once again the results of CMTfits well with that fromTMM. It confirms that CMT is an accurate
model about the guidedmodes in the coupledWGs.

Nowwe can try to analyze the formation of EP3 and the associated characteristics of it.Wefirst calculate the
distributions ofEy at EP2 andEP3 offigure 2, and show them infigure 3.Note that because the values ofβ are
real here and thewhole structure is lossfree, the fieldsEy inside the structure aremade to be synchronous so that

{ } =Im E 0y .We can see EP3 is sharply different fromEP2 because thefield insideWG2 is nearly zero, which is
in agreementwith equation (12). The patterns offields inWG1 (WG3) are similar with each other in the two
scenarios.

We then pay attention to the structure supporting EP3, and calculate the distributions ofEy at six points
around EP3 in the dispersion curves offigure 2(b) and (d). The results are shown infigure 4. A notable feature is
that for the point q2 in themiddle branchβ2, thefield insideWG2 is veryweak, similar to EP3. This
phenomenon is also in agreementwith equation (11) .

Figure 2.Variation of the eigensolutions β versus the distance a by using TMM. (a), (c) In general we can always get an EP2, where the
other dispersion curve is real and always persists. (b), (d)Byfinely tuning parameters of the structurewe can get an EP3. Red circles are
the bestfitted results by using equation (1). { }bIm equals zero in the regions of exact phase and is not shownhere.

Figure 3.Distributions offieldsEy at (a)EP2 and (b)EP3 shown infigure 2. Thefields are normalized by themaximumamplitudes in
the structure.
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When a< ac, two branches ofβ become complex. Now the fieldsEy are no longer synchronous so in
figures 4(d) to (f)we also plot the imaginary parts ofEy. From the distributions offields we can see in the broken
phase scenario, the patterns of ReEy of the all three branches are almost identical with each other (alsowith that
of EP3). The only differences inEy are carried by the imaginary parts ImEy. For the two complex-β branches,
ImEy are opposite to each other and are especially strong aroundWG2. This phenomenon can be explained by
using equation (11), that in the region of broken phase, the complex amplitudes of the basic vectorψ2 inΨ1,3 are
purely complex and possess aπ/2 phase difference from those of the basic vectorsψ1,3.

To prove that at EP3 the three dispersion branchesβ indeed coalesce together, we test whether their
eigenvectors follow the prediction of equation (11). It can be done by checking how the relativemagnitude of
field insideWG2 varies with a. Here we assume thatψi in the eigenvector represents Ey insideWGi (i= 1, 2, 3),
calculate the integral of |E|2 inside eachWG, and find the ratioα of |E|2 confined inWG2by using

∣ ∣

∣ ∣ ∣ ∣ ∣ ∣
( )

ò

ò ò ò
a =

+ +

E dx

E dx E dx E dx
. 15

y

y y y

WG2
2

WG1
2

WG2
2

WG3
2

Albeit this approach is very rough because the fields outsideWGs are ignored, the variation ofα versus a shown
infigure 5(a) agrees well with the dependence of |ψ2|

2 onA given by equation (11). Formodes in themiddle
branchβ2,α is nearly zero, which is in agreementwith the nullψ2 inΨ2. As for the other two branches, when a is
much greater than ac, themagnitude ofA ismuch smaller thanB, i.e. |A|= |B|. The eigenvectors are close to
[ ]0, 1,1 T , andα approaches 50%.When a decreases so thatA becomes comparable withB,α decreases sharply
to zero. At acwhereA= B, as expected, a coalescence takes place. From this coalescence ofαwe canmake the
conclusion that this point at a= ac is not an accidental degeneracy of EP2with othermodes but a standard EP3.

Since EPs in  -symmetricWGs stop light [15, 16], we also calculate the group velocities vg of the three
branches. Here vg is given by the ratio of the Poynting vector *ò= -S E H dx 2z y x to the energy density
W= ∫wdx via the formula vg= Sz/W.When calculating the energy density we have adapted

( ) ∣ ∣ ( ) ∣ ∣  w w m m w w= ¶ ¶ + ¶ ¶w E H4 40 NIM
2

0 NIM
2 in order to guarantee a positive energy. At 5GHz, the

utilized dispersion ofNIMgives ( ) w w¶ ¶ = 5NIM and ( )m w w¶ ¶ = 4.975NIM . Figure 5(b) shows the
variations of vg versus a of the three branchesβ.When a> ac so thatA< B, theβ2 branch possesses a negative
group velocity. The reason is that formodes in this branch, over half of thefield is localized inNIMWG1
supporting backward propagation offield. As for the other two branches, they are generally positive.When
approaching ac, all the branches coalesce together to vg=0, which implies that at ac the backward energyflux in
theNIMWG1balances the forward ones inWG1 andWG2, and in the surrounding air. This phenomenon is
also demonstrated in [40] about EPs inNIM-dielectricWGs.Once again, figure 5(b) also provide an evidence
that at ac an EP3 is achieved.

Figure 4.Distributions offieldsEy at the chosen points offigures 2(b) and (d) supporting EP3.
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3.Discussion

Up to nowwe have proved that it is feasible to achieve an EP3 in a lossfreeWG system containingNIM. This kind
of EP3 is produced via the hybridization of the anti- symmetric coupling in theNIM-dielectric pair and the
Hermitian coupling in the dielectric-dielectric pair. No loss or gain is required. This work highlights the great
potential ofNIM in overcoming the obstacles of ordinary non-Hermitian optics, and the possibilities of
combining anti- ,  , andHermitian couplings for various purposes. Albeit in this article we only consider
NIM-dielectric-dielectric configuration, EP3 can be achieved in the dielectric-NIM-NIM configuration as well
because the coupling in theNIM-NIMpair is alsoHermitian.

Ourwork provides a useful route to design lossfree systems in achieving EPswith higher orders by increasing
the number ofWGs [11, 12, 18–34]. For example, herewe can propose a schematic structural design for an EP4
by using two dielectric and twoNIMWGs. Arranging these fourWGs parallel in the dielectric-dielectric-NIM-
NIMorder, and assuming their resonantwavevectors atω0 are k1, k2, k1, and k2, respectively, the effective
Hamiltonian based onCMTwith nearest-neighbor interaction can be expressed as
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whereA,B, andC are all real for simplification. Assuming

( )d= k k , 171,2 0

it is then easy to prove that under the conditions of

(∣ ∣ ∣ ∣)
∣ ∣ ( )d

=  +
=

B A C

AC

,

, 182

all the four eigensolutions coalesce together and form anEP4 at

( )b = k . 19EP4 0

The hierarchical construction of higher-order EPs by using above proposedmethod deserves a further
discussion. Future attention could also be paid to the nonclassical nature offields in this hybrid optical
systems [42].

4. Conclusion

In summary, herewe show it is feasible to achieve an EP3 in loss-freeWGs by utilizing the anti- symmetry
induced byNIM.Wepropose a configurationmade of oneNIMWGand two dielectricWGs, and suggest to
hybridize the anti- symmetric interaction in theNIM-dielectricWGpair with theHermitian interaction in
the dielectric-dielectricWGpair together. Such a kind of configuration has not been discussed before, to the best
of our knowledge. An effective lossfree non-HermitianHamiltonian is developed by usingCMT,which is
neither  symmetric nor anti- symmetric. TMMsimulation agrees well with the prediction of CMT, and

Figure 5. (a)Ratio of field localized insideWG2, where the y axis is plotted logarithmically. (b)Group velocities vg of the three
branches. Results about complexβ are not shown because the associatedα and vg are not well defined.
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the features about EP3 in the coupledWG structure are discussed. A structure in supporting EP4 is also
designed. This work highlights the great potential ofNIM in overcoming the obstacles of ordinary non-
Hermitian optics, and the possibilities of combining anti- ,  , andHermitian couplings for various
purposes.
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