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Abstract

Negative-index materials (NIMs) support optical anti-parity-time (anti- P7" ) symmetry even when
they are lossless. Here we prove the feasibility in achieving higher-order exceptional points (EPs) in
lossfree waveguide arrays by utilizing the anti-P7 symmetry induced by NIM. Numerical simulation
abouta third-order EP fits well with the coupled-mode theory. A scheme of achieving fourth-order
EPs s also discussed. This work highlights the great potential of NIM in overcoming the obstacles of
ordinary non-Hermitian optics, and the possibilities of combining anti-P7 , P7 , and Hermitian
couplings for various purposes.

1. Introduction

Exceptional points (EPs) refer to the singular degeneracies of non-Hermitian wave/quantum systems [1-7],
where all the eigenvalues and the eigenvectors of the effective Hamiltonian coalesce simultaneously. Its novel
topology enables interesting mode switching behaviors when circling around it [6-10]. Furthermore, the
coalescent eigenfunction at EPs is very sensitive to tiny perturbation in the effective Hamiltonian, so high-
sensitivity applications [11-14] can be envisioned. The high sensitivity is also associated with stopped-light effect
and enhanced density of states, and can be utilized for other interesting purposes such as in realizing coherent
absorbers and lasers [15—17].

Parity-time (P7 ) symmetric systems [ 1-5], which are non-Hermitian, are the widely utilized ones in
realizing EPs that separate the complex and real spectra regimes of the Hamiltonian. Considering a system
supporting two coupled entities with distributed gain and loss, the P7 symmetry requires for
(PTY"YHPT = H,where H is the Hamiltonian, P = [0, 1; 1, 0] induces a spatial reflection and leads to a position
exchange of the two entities, and T operator leads to a time-reversal operation (calculates the complex
conjugates of all the elements in the Hamiltonian) and has the effect of turning gain into loss and vice versa [18].
Since the number of coalescing eigenvalues and the eigenvectors determines the order of EPs, such a kind of
non-Hermitian systems only supports second-order EPs (EP2 for brief). Higher-order EPs, at which more than
two eigenvalues and eigenstates coalesce, could provide more degrees of freedom for artificially designing the
topology, increase the frequency splitting, and enhance the sensitivity further. Consequently, people have
proposed many schemes in achieving higher-order EPs by increasing the number of subsystems in various
platforms such as photonic crystals, microcavities, lattices, resonator networks and waveguides (WGs) [11, 12,
18-34]. However, among all the non-idealities in experiments [34], the strictly requirement of delicate balance
among the spatially distributed gain and loss is the detrimental one, which dramatically hinders the transfer of
higher-order EPs from a curious mathematical object to realistic applications of our daily life. Ways to access
high-order EPs without resorting to gain and loss are thus desired. Such a target is, in principle, achievable
because non-Hermitian physics covers many miscellaneous categories including but not limited to the P7°
symmetry. In addition, to achieve a non-Hermitian Hamiltonian, besides introducing imaginary components
(gain and loss) to the diagonal elements we can also just set the off-diagonal elements unequal. The later route
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Figure 1. Schematic of the configuration under investigation, which contains three straight lossfree WGs. WG1 is made of a NIM with
enmv = —3and juy = —0.556. WG2 and WG3 are made of dielectrics.

does not require gain and loss, and the whole energy can be conserved. A good example is the recently
demonstrated anti- P7 symmetry [(PT)""HPT = —H] associated with lossfree negative-index materials
(NIMs) [35—40]. Due to the backward propagation of field in NIM, the coupling between a NIM WG and an
ordinary dielectric WG can be modeled by an anti- 7 Hamiltonian with unequal off-diagonal elements, and
EP2s are shown to exist in the spectra of the guided waves [39, 40].

In this article, we prove the feasibility in realizing an optical third-order EP (EP3) by using the anti- PT
symmetry induced by lossfree NIMs. A NIM-dielectric-dielectric WG configuration is utilized, which hybridizes
the anti-P7 symmetry of NIM-dielectric WG pair and Hermitian coupling of dielectric-dielectric WG pair
together. Such a kind of configuration has not been discussed before, to the best of our knowledge. An effective
non-Hermitian Hamiltonian is developed by using the coupled-mode theory (CMT) in order to explain the
existence of EP3. This non-Hermitian Hamiltonian is different from other approaches of high-order EPs,
because itis lossfree, and is neither P7” symmetric nor anti- P7 symmetric [11, 12, 18-34]. The transfer-matrix
method (TMM) is utilized to numerically calculate eigensolutions of the guided modes, prove the existence of
EP3, and reveal features of it. At the end of this article we also propose a scheme of realizing a fourth-order EP
(EP4). This work proves that NIMs and the associated anti- P7 symmetry have great potential in the study of
non-Hermitian optics in lossfree environments for various applicable purposes.

This article is organized as follows. In section 2.1 we firstly propose the main concept of the coupled-WG
structure and the physical mechanism of EP3 by using CMT. In section 2.2 we provide numerical calculation
and analysis about the guided modes by using TMM. We show that the Hamiltonian from CMT can explain
main features of the results from TMM, and prove the observed singular degeneracy is indeed an EP3. The
analysis also provides more detailed information about how the eigenmodes evolve around EP3. Discussion
about the importance of this study is provided in section 3. We also present a simple scheme of achieving an EP4
in section 3. Summary is made at the end of this article.

2. Theory and analysis

2.1. Structure, CMT and effective hamiltonian

Let us consider the structure shown in figure 1. It contains three straight WGs surrounded by air. All the media in
this structure are lossfree. The lower two WGs (WG2 and WG3) are made of dielectrics with e > O and = 1.
The top WG1 is made of a NIM with expy < 0and geyypy, < 0. Because NIM requires an intrinsic dispersion of
O(enmw)/ 0w > 0and O(pyw)/Ow > 00 as to give a positive energy density [35-37, 40], in this article we
would keep the angular frequency wj a constant, and test the variation of the wavevectors (3 of the eigenmodes
versus a geometric parameter of the structure.

Properties of the guided modes inside this structure can be found by using Maxwell’s equations, see [15,
38-40]. As discussed in [39, 40], because the total energy should be conserved in this loss-free system, and the
propagating directions of energy in the NIM and dielectric WGs are opposite to each other, the coupling
between the top NIM WGl and the adjacent dielectric WG2 is anti- P7 symmetric [39, 40]. As for WG2 and
WG3, their interaction can be described by using a Hermitian matrix. Only keeping the nearest-neighbor
interaction, according to CMT the hybridization of the anti- P7 symmetric interaction and the Hermitian one
can be modeled by an effective Hamiltonian 7 in the form of
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where (s the wavevector of the eigenmode, kyg; is the resonant wavevector of mode in separate WGi (i = 1, 2,
3), and v, represents an associated field component of it. Parameter A represents the strength of the anti- P7
coupling between WG1 and WG2, and B is the Hermitian coupling strength between WG2 and WG3. Both A
and Bare real. Note that although this effective Hamiltonian H is non-Hermitian, it is neither P7” symmetric
nor anti-P7 symmetric because (PT)~'HPT, where P=[0,0, 150, 1,0; 1, 0, 0], in general does not return  or
—H.Equation (1) generally has three solutions. Here let us assume the resonances in WG2 and WG3 are
degenerated but different from that of WG,

kwai1 = ko + 36,
kwaa = kwas = ko, @)

where the factor 3 before § is intentionally introduced in order to make below analysis concise. Substituting
them into equation (1) and assume

)/ = 6 - kO - 6) (3)
the three solutions of 3 can be found by solving the secular equation
¥’ + Gy + Co=0, )

where the coefficients are given by

G = A — B? — 362,

Co = (A2 + 2B — 26%)6. (5)
Because A, B, kyand d are all real, Cyand C, are also real valued.

Assuming the three solutions are y; , 3, equation (4) has many interesting properties such as y; + y, + y; =0
and y,y,y; = — Cy. A notable feature is that it can support an EP3 with three identical solutions of y = 0 when

CG=Cy=0. (6)
equation (6) can be satisfied only when the conditions of
6=0,
A? = B? 7)

are met simultaneously. These are the existence conditions of EP3, the main conclusion of this article.
Because parameters A and B are tunable by managing the distances between adjacent WGs, to gain a deep

insight about the formation of EP3 and the variation of the associated eigenvectors, let us check how the

eigensolutions vary around EP3. Substituting kwgi = kwaga = kwags = ko into equation (1) we can get

(B — ko)’ + (B — ko)(A4* — B} = 0. ®)

Assuming all the solutions are real, we can sort them in ascending order. The solution (3, is between the other
two and is given by

B2 = ko, )
which is a constant and does not depend on the values of A and B. The other two solutions are given by

B3 = ko F VB? — A%, (10)

which are complex (real) in the region of broken (exact) phase when B? < A*(B* > A?). As for the eigenvectors,
from equation (1) we can find

\:[12 = ;[B) 0) _A]Ta
A + B?
1 I
\Ij, :_[Aa:F Bz_Aza_B]T) (11)
1,3 x/EB

respectively.
Once the condition of A% = B? is satisfied, a coalescence takes place, where all the three eigensolutions
coalesce together. This coalescent point is an EP3, and the eigensolution and eigenvector are given by

ﬁEPfﬁ = k(),

T
‘I’Epj, = %[1,0, —agn(%)] 5 (12)

respectively, where the function sign(x) returns 1 (—1) whenx > 0 (x < 0).
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If the two conditions of equation (6) are not satisfied simultaneously, e. g. when ¢ = 0, we could not access
EP3. Now the system at most supports an EP2. One solution of 3 is always real, and the other two solutions are

determined by
2 3
A= (&) + (Q) . (13)
2 3

When A = 0, the two solutions are identical and an EP2 is achieved. When moving from A = 0, for example, by
changing the distance between two adjacent WGs so as to modify A or B, the system would enter either the exact
or the broken non-Hermitian phase. If A > 0, two complex conjugate solutions are achieved, and the system is
within the broken phase. If A < 0, two real solutions with different values are found, and the system is within the
exact phase. In the next section we would demonstrate this phenomenon.

2.2. TMM Simulation and Analysis

The theory proposed in the above subsection is based on the effective Hamiltonian from CMT. When studying
the guided modes in coupled WGs we should still resort to some rigorously numerical methods based on
Maxwell’s equations. Here we use TMM to analyze the transverse-electrical modes in the structure. In each layer
the field is expressed as E, = [E, exp(jk;x) + E_ exp(—jk;x)]exp(—jB3z), where k? + 8% = eu,wy/c? cisthe
speed of light. The transmission/reflection properties of the structure are summarized by

[E,, 0]" = M[E,, E, 1", where M is the transfer matrix, E,, E, and E, are the incident, transmitted, and reflected
fields. At the top and bottom air layers surrounding the WGs, fields are required to exponentially decay away
(Im{k;} = 0)so that the out-going boundary condition can be met. Wave-guiding is satisfied by the self-
sustained condition of M, = 0[41] so that E, and E, are nonzero even when no incidence is present (Ey = 0). In
the phase-broken region where (3is complex, similar process can be utilized by scanning 3in the two
dimensional space spanned by Re{ 3} and Im{ 3}. As for the associated distributions of fields, they are also
calculated by using TMM when the eigensolutions are found. Note that TMM can be applied to the transverse-
magnetic modes as well by replacing E, by H,..

The geometric and optical parameters of the structure are set as follows. The thicknesses of all WGs are 4 cm.
The distance between WG2 and WG3 is set to be 6 cm so that Bis a constant here. The distance a between WG1
and WG2, which determines the value of A, is variable in our study. NIM is assumed to be the documented one
with expy = 1 — wi/w?and iy = 1 — Fw?/(w? — w}), wherew, = 27 x 10 GHz, w,,, = 27 x 4 GHz,and
F=0.56[36,37]. Atwy = 27 x 5 GHz (a free-space wavelength of 6 cm) the dispersion gives expy = —3 and
tiam = —0.556. Figures 2(a) and (c) display the spectra of 3 versus a when WG2 and WG3 are made of the same
dielectric of € = 4.504. In this case kywgz = kwgs = kwgi s0 we could only get an EP2. From the curves we can see
the lower branch f3, is always real, but the upper two branches 3, and (35 coalesce together in forming an EP2 at
a=7.09 cm. When a is smaller than 7.09 cm, the imaginary parts of these two branches are no longer zero, and
the non-Hermitian phase is broken.

In order to realize an EP3, we should finely tune the parameters of the structure. When € of the two dielectric
WGs are modified by only 0.015% to 4.504 650 83, the dispersion curves are modified sharply and an EP3 is
achieved, see figures 2(b) and (d). Now the initial lower branch (3; coalesces with the upper two branches 3, ; ata
single point a. = 6.69 cm and forms an EP3. When a becomes smaller, two branches of 3become complex. The
middle branch is always real and is almost a constant respect to a. Note that due to the coalescence at EP3, it is
impossible to find the exact one-to-one correspondence of the complex branches ata < a, to theseata > a, so
here the branches in the region of broken phase are still labeled in ascending order of Im { 3}.

Above numerical calculations are based on TMM, which is rigorous. Before discussing characteristics of EP3
we should check how they fit with the results of CMT. To do it, we perform a best fitting about the dispersion
curves by numerically solving equation (1). We first fit the curves shown in figures 2(b) and 2(d) because they are
governed by 6 = 0 and require less fitting parameters. The value of kg is given by the numerical value of
3, = 1.325144 cm ™' obtained from TMM. As for A and B, following [40] we assume

A:Bexp(—“_”“), (14)
Ly
where a. = 6.69 cm is the position of EP3, and L is the decay length. The best fitting then tells B= 1.22 x 10>
cm'and L; = 1.3 cm. From the red circles in figures 2(b) and 2(d) we can see CMT predicts most features of the
dispersion curves from TMM. The only minor discrepancy is about Re {3} in the broken phase region, which
might be fixed by considering spatial dispersion.

We then try to fit the results shown in figures 2(a) and (). Since the only difference of them from figures 2(b)
and (d) is that the resonances in WG2 and WG3 are perturbed by the same amount, we would maintain all the
parameters about figures 2(b) and (d) unchanged, and only introduce a tiny perturbation to kwgz, was, that
kwaz = kwas = ko + Ak. A best fitting is achieved when Ak = — 1.8 x 10~ *cm ™', as shown by the red circles.

4



X-Z Zhangetal

IOP Publishing Phys. Scr. 98(2023) 095511
——Im{p}=0 | —— Im{B}0 '
1.326 | = Complex = 1326 | = Complex i q3 ﬂ.} |
o Fit B & Yk i
i : = :
£ R T £ EP3 q2 B,
1328 B ~ 1.325 1
@ = |
@ "o, ) i 1
= ke - E M
g 1
1.324 : % 13241
() a, (b)
— Im{B}=0 ' —Im{Bl=0
0.002 - Complex | g il w— Complex |
B, e - 0.002 45, s e
1;_‘ v
E p3
>
= 0.000 A EP2 . 2 ez EP3
= é_‘_: p2
"'E' ﬂ},’ E ﬂ} pl
-0.002 - 1 -0.002 - 1
© (@)
60 65 70 7.5 8.0 60 65 dc 79 75 8.0
a (cm) a (cm)

Figure 2. Variation of the eigensolutions (3 versus the distance a by using TMM. (a), (c) In general we can always get an EP2, where the
other dispersion curve is real and always persists. (b), (d) By finely tuning parameters of the structure we can get an EP3. Red circles are
the best fitted results by using equation (1). Im{ 3} equals zero in the regions of exact phase and is not shown here.
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Figure 3. Distributions of fields E, at (a) EP2 and (b) EP3 shown in figure 2. The fields are normalized by the maximum amplitudes in
the structure.

We can see once again the results of CMT fits well with that from TMM. It confirms that CMT is an accurate
model about the guided modes in the coupled WGs.

Now we can try to analyze the formation of EP3 and the associated characteristics of it. We first calculate the
distributions of E, at EP2 and EP3 of figure 2, and show them in figure 3. Note that because the values of Fare
real here and the whole structure is lossfree, the fields E, inside the structure are made to be synchronous so that
Im{E,} = 0.We can see EP3 is sharply different from EP2 because the field inside WG2 is nearly zero, which is
in agreement with equation (12). The patterns of fields in WG1 (WG3) are similar with each other in the two
scenarios.

We then pay attention to the structure supporting EP3, and calculate the distributions of E, at six points
around EP3 in the dispersion curves of figure 2(b) and (d). The results are shown in figure 4. A notable feature is
that for the point 42 in the middle branch (3,, the field inside WG2 is very weak, similar to EP3. This
phenomenon is also in agreement with equation (11).
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Figure 4. Distributions of fields E, at the chosen points of figures 2(b) and (d) supporting EP3.

When a < a,, two branches of 3become complex. Now the fields E, are no longer synchronous so in
figures 4(d) to (f) we also plot the imaginary parts of E,. From the distributions of fields we can see in the broken
phase scenario, the patterns of ReE, of the all three branches are almost identical with each other (also with that
of EP3). The only differences in E, are carried by the imaginary parts ImE,. For the two complex-3branches,
ImE, are opposite to each other and are especially strong around WG2. This phenomenon can be explained by
using equation (1 1), that in the region of broken phase, the complex amplitudes of the basic vector ¥, in U, 5 are
purely complex and possess a /2 phase difference from those of the basic vectors 1), .

To prove that at EP3 the three dispersion branches 3indeed coalesce together, we test whether their
eigenvectors follow the prediction of equation (11). It can be done by checking how the relative magnitude of
field inside WG2 varies with a. Here we assume that +); in the eigenvector represents E, inside WGi (i = 1, 2, 3),
calculate the integral of |E|* inside each WG, and find the ratio a of |E|* confined in WG2 by using

oo |EyPdx
o= a2 (15)

2 2 29,
fWGl |E,["dx + fwcz |EylPdx + fwca |E,[*dx

Albeit this approach is very rough because the fields outside WGs are ignored, the variation of o versus a shown
in figure 5(a) agrees well with the dependence of |1/,|* on A given by equation (11). For modes in the middle
branch 3,, ais nearly zero, which is in agreement with the null ¢, in W,. As for the other two branches, when a is
much greater than a,, the magnitude of A is much smaller than B, i.e. |A| < |B|. The eigenvectors are close to
[0, 4-1,1]7, and o approaches 50%. When a decreases so that A becomes comparable with B, o decreases sharply
to zero. Ata,where A = B, as expected, a coalescence takes place. From this coalescence of o we can make the
conclusion that this point ata = a.is not an accidental degeneracy of EP2 with other modes but a standard EP3.
Since EPs in PT -symmetric WGs stop light [15, 16], we also calculate the group velocities v, of the three
branches. Here v, is given by the ratio of the Poynting vector S, = — f E,Hdx / 2 to the energy density
W= fwdxvia the formula v, = S,/ W. When calculating the energy density we have adapted
w = 6 d(enmw)/Ow|EP /4 + 110 (pnpw)/Ow|HI? /4 in order to guarantee a positive energy. At 5GHz, the
utilized dispersion of NIM gives d(enivw)/Ow = 5 and Oty w)/Ow = 4.975. Figure 5(b) shows the
variations of v versus a of the three branches 3. When a > a.so that A < B, the 3, branch possesses a negative
group velocity. The reason is that for modes in this branch, over half of the field is localized in NIM WG1
supporting backward propagation of field. As for the other two branches, they are generally positive. When
approaching a,, all the branches coalesce together to v,=0, which implies that at a. the backward energy flux in
the NIM WG1 balances the forward ones in WG1 and WG2, and in the surrounding air. This phenomenon is
also demonstrated in [40] about EPs in NIM-dielectric WGs. Once again, figure 5(b) also provide an evidence
that at a.an EP3 is achieved.
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3. Discussion

Up to now we have proved that it is feasible to achieve an EP3 in alossfree WG system containing NIM. This kind
of EP3 is produced via the hybridization of the anti- P7” symmetric coupling in the NIM-dielectric pair and the
Hermitian coupling in the dielectric-dielectric pair. No loss or gain is required. This work highlights the great
potential of NIM in overcoming the obstacles of ordinary non-Hermitian optics, and the possibilities of
combining anti-P7, P7 , and Hermitian couplings for various purposes. Albeit in this article we only consider
NIM-dielectric-dielectric configuration, EP3 can be achieved in the dielectric-NIM-NIM configuration as well
because the coupling in the NIM-NIM pair is also Hermitian.

Our work provides a useful route to design lossfree systems in achieving EPs with higher orders by increasing
the number of WGs [11, 12, 18-34]. For example, here we can propose a schematic structural design for an EP4
by using two dielectric and two NIM WGs. Arranging these four WGs parallel in the dielectric-dielectric-NIM-
NIM order, and assuming their resonant wavevectors at wy are ky, k,, k;, and k,, respectively, the effective
Hamiltonian based on CMT with nearest-neighbor interaction can be expressed as

ko A 0 o]|wvn P
Ak B o]y

= , 16
0 —B k1 C 1/}3 ﬂ dJS ( )
0 0 C k|| on
where A, B, and Care all real for simplification. Assuming
ki, =kot 6, (17)
itis then easy to prove that under the conditions of
B=£(4] + IC]),
62 =1AC|, (18)

all the four eigensolutions coalesce together and form an EP4 at
Bepa = ko. (19)

The hierarchical construction of higher-order EPs by using above proposed method deserves a further
discussion. Future attention could also be paid to the nonclassical nature of fields in this hybrid optical
systems [42].

4, Conclusion

In summary, here we show it is feasible to achieve an EP3 in loss-free WGs by utilizing the anti- P7 symmetry
induced by NIM. We propose a configuration made of one NIM WG and two dielectric WGs, and suggest to
hybridize the anti-P7 symmetric interaction in the NIM-dielectric WG pair with the Hermitian interaction in
the dielectric-dielectric WG pair together. Such a kind of configuration has not been discussed before, to the best
of our knowledge. An effective lossfree non-Hermitian Hamiltonian is developed by using CMT, which is
neither P7" symmetric nor anti-P7 symmetric. TMM simulation agrees well with the prediction of CMT, and
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the features about EP3 in the coupled WG structure are discussed. A structure in supporting EP4 is also
designed. This work highlights the great potential of NIM in overcoming the obstacles of ordinary non-
Hermitian optics, and the possibilities of combining anti- P7 , P7 , and Hermitian couplings for various
purposes.
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