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Abstract: We analyze the guided modes in coupled waveguides made of negative-index
materials without gain or loss. We show that it supports non-Hermitian phenomenon on the
existence of guided mode versus geometric parameters of the structure. The non-Hermitian effect
is different from parity-time (PT ) symmetry, and can be explained by a simple coupled-mode
theory with an anti-PT symmetry. The existence of exceptional points and slow-light effect are
discussed. This work highlights the potential of loss-free negative-index materials in the study of
non-Hermitian optics.
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1. Introduction

Recent years the non-Hermitian physics, especially parity-time (PT ) symmetry [1–7], has
attracted much attention in the society of optics, because it provides an additional degree of
freedom in manipulating the dynamics of optical waves. Nevertheless, the requirement on proper
strength of gain and loss effects hinders the realistic applications of PT symmetric optics. The
advances of other categories of non-Hermitian optics, e.g. anti-PT symmetry [8–11], might
overcome this drawback because gain and loss are not strictly required.

The simplest configuration in studying PT symmetric optics is two parallel waveguides (WGs).
Such a kind configuration can be readily studied by using Maxwell’s equations, and it supports
some intriguing optical effects especially the stopped light at exceptional points (EPs) [12–15] that
separate the conserved and broken PT phases [16–20]. However, for an optical wave propagating
inside a WG, it contains multiple important physical parameters especially the wavevector k
charactering the propagation of phase front and the Poynting vector S presenting the propagation
of energy flux. They carry different informations about the wave, and might have different
directions of propagation [21,22]. The extreme situation is that in a negative-index material
(NIM) with simultaneous negative magnetic permeability (µNIM<0) and electric permittivity
(ϵNIM<0), where the direction of k is opposite to that of S [23–27]. However, non-Hermitian
feature of coupled WGs containing NIM has not been extensively discussed. Only recently do
we notice that Mealy et al. [28] have showed that EP of degeneracy can be obtained in two
coupled WGs by a proper coupling of forward and backward waves, where the backward waves
are generated by a proper designed grating.

In this article, we check the optical waves in coupled WGs made of NIM and positive-index
material (PIM). A PIM has positive magnetic permeability and electric permittivity, and covers
all the dielectric materials in nature. We show that the guided modes in this system also
support non-Hermitian feature, even when all the constituent media are loss-free. At a given
angular frequency and WG thicknesses, the wavevector k of the eigenmodes and the associated
eigenvectors vary with the distance a between the two WGs, and they coalesce at a critical value
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of ac below which the wavevector k becomes complex. This phase transition point is an EP. A
simple non-Hermitian coupled-mode theory is utilized to explain our results, which implies that
the field dynamics induced by NIM belongs to anti-PT symmetry. Features at EPs including the
slow-light effect are discussed.This study highlights the important novelties of NIM, especially
its great potential in the study of non-Hermitian optics by bypassing many restrictions of PT

symmetry.

2. Simulation and analysis

Let us consider the simple structure shown in Fig. 1. It contains two straight WGs made of lossless
media surrounded by air. One WG is PIM, and we assume that it is a dielectric of ϵPIM = 4 and
µPIM = 1. The other WG is a NIM that has been discussed by various authors [29–31]. The well
documented structure of NIM with ϵNIM = 1 − ω2

p/ω
2 and µNIM = 1 − Fω2/(ω2 − ω2

0) can be
utilized here, where ωp = 2π × 10 GHz, ω0 = 2π × 4 GHz, and F = 0.56 [29–31]. An effective
NIM is achieved between 4 GHz and 6 GHz.

Fig. 1. Schematic of the configuration under investigation, which contains two straight
WGs made of lossless media. One medium is a dielectric with ϵPIM>0 and µPIM = 1, while
the other one is a NIM with ϵNIM = −3 and µNIM = −0.556.

Because NIM requires an intrinsic dispersion of ∂(ϵNIMω)/∂ω>0 and ∂(µNIMω)/∂ω>0 so
as to give a positive energy density [21,22], in our below analysis we would keep the angular
frequency ω a constant, and test the variation of the wavevectors k of the eigenmodes versus a
geometric parameter of the coupled WGs. Here we set ω = 2π × 5 GHz (a free-space wavelength
of 6cm), and the dispersion gives ϵNIM = −3 and µNIM = −0.556. The index of refraction equals
nNIM =

√
ϵNIM

√
µNIM = −1.291. Thickness b of each WG is 4 cm. The distance a between the

two WGs is chosen as the variable.
Assuming the direction of the wavevector k is z, the dispersion and distribution of the

eigenmodes can be numerically found by using Maxwell’s equations and boundary conditions
[14,21,22]. For example, considering the transverse-electric (TE) polarized eigenmodes with
non-vanishing Ey component

Ey = e−jkz+jωt

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E1e−β(x−a/2−b), x>a/2 + b

E2e−jαNIM(x−a/2) + E3e+jαNIM(x−a/2), a/2 + b>x>a/2

E4e+βx + E5e−βx, a/2>x>−a/2

E6e−jαPIM(x+a/2) + E7e+jαPIM(x+a/2), −a/2>x>−a/2 − b

E8e+β(x+a/2+b), x<−a/2 − b

(1)
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with
k2 − β2 = ω2/c2, (2)

k2 + α2
m = ϵmµmω

2/c2, (3)

where the subscript m stands for NIM and PIM. The associated magnetic fields can be found
from Eq. (1) using ∇ × E⃗ = −∂B⃗/∂t. By applying the electromagnetic boundary conditions, and
defining

Fm =
β + jαm/µm

β − jαm/µm
, (4)

Υm =
Fm exp(j2αmb) − F−1

m
exp(j2αmb) − 1

, (5)

it is readily to show that the eigensolutions k are given by

ΥNIMΥPIM − exp(−2βa) = 0. (6)

By substituting the eigensolutions k back into Eq. (1) we can calculate the distributions of
fields. Formula for transverse-magnetic (TM) polarized eigenmodes can be developed similarly.

Equation (6) can be numerically solved, for example, by calculating the left-hand side of it at
different k values to find zeroes. A standard result of k versus a is shown in Fig. 2(a). We can see
when the WG distance a is large enough so that the two WGs are weakly coupled, two separated
eigenmodes can be achieved. Each eigenmode represents a localized mode in a single WG. From

Fig. 2. (a) Variation of k versus a. (b) and (d) are the distributions of field Ey and Poynting
vector Sz at the two dispersion points in (a) where a = 3 cm. (c) shows the results in a
PIM-PIM structure. Note that Im(Ey) is zero in (b) and (d), and the y-coordinate of Im(k) in
(a) is shown at the right side, which is properly chosen so that the origins of the curves Im(k)
overlap with EP.
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Fig. 3. Distributions of fields Ey at some different points in the k versus a curves. They
confirm that the transition point at ac is an EP. Note that Im(Ey) is no longer zero when a<ac
where Im(k) ≠ 0.

Fig. 4. Variation of k versus a at different ϵPIM values, from (a) ϵPIM = 4.3 to (d) ϵPIM = 4.6.
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the distributions of field Ey and Poynting vector Sz shown in Figs. 2(b) and 2(d) we can conclude
that the eigenmode at kNIM = 1.328 cm−1 is supported by the NIM WG, where the direction
of energy flux is opposite to that of k. The other one at kPIM = 1.186 cm−1 is localized at the
PIM WG. From the number of nodes (Ey = 0) inside each WG we can see the field supported by
the planar PIM WG is a TE2 mode, and that in the NIM WG is a TE1 one [30]. Note that the
wavevector k is real here, and we have assumed that the expansion coefficient E1 in Eq. (1) is real.
As a result, the imaginary component Im(Ey) is zero and is not shown in Figs. 2(b) and 2(d). The
coefficient exp(−jkz + jωt) in Eq. (1) is neglected when plotting the distribution of fields.

Figure 2(a) displays a unique phenomenon that is absent in ordinary dielectric WGs. When a
decreases, the modes in the two WGs can couple together to form hybrid eigenmodes. However,
here the k values of the eigenmodes approach to each other. When a is smaller than a critical
distance ac, the eigenmodes coalesce. Below ac only complex k exists (brown line and dots in
Fig. 2(a)), which can be found by searching for the solutions of Eq. (6) in the space formed by
Re(k) and Im(k). This phenomenon is in sharp contrast with the ordinary belief about coupled
PIM-PIM WGs, that when a decreases, the coupling between the two WGs would become stronger
and the split in k should increase rather than decrease. To illustrate this difference, we show an
example about k versus a in a PIM-PIM configuration in Fig. 2(c), where NIM in the structure
of Fig. 1 is replaced by a conjugate PIM with ϵPIM = 3 and µPIM = 0.556. We can see in this
PIM-PIM configuration all the solutions of k are real, and the two branches of k do not coalesce.

The coalescence of dispersion at a critical value of ac shown in Fig. 2 resembles EPs in PT

symmetry very much [12–20]. We check the eigenmodes around this point (see Fig. 3), and find
that when approaching this point from a>ac, the field distributions of the two eigenmodes become
more and more similar with each other. So at this critical point not only the eigensolutions
k but also the associated eigenvectors coalesce simultaneously. This point is not a diabolic
point in Hermitian system, but a standard EP [16–18]. The region of a>ac (a<ac), where the
eigensolutions k are real (complex), possesses an exact (broken) non-Hermitian phase.

Figure 3 also displays the distributions of fields when a<ac. In this phase-broken region, at
each given a value we can generally find two complex solutions of k, which are conjugate to each
other. The complex solutions of k render complex values of β and αm given by Eqs. (2) and (3).
Consequently, Im(Ey) is no longer zero (see the insets of Fig. 3).

To check how the curves of k versus a shown in Fig. 2(a) vary when parameters of the coupled
WGs change, we repeat the calculations at different ϵPIM values. It would change the kPIM value
of the PIM WG. One can also achieve the same effect by changing the thickness of it. As for the
NIM WG, we would keep all the parameters constant so that kNIM does not vary in this article.

Figure 4 displays the results when ϵPIM increases linearly from 4.3 to 4.6. The increased ϵPIM
would push the kPIM value in the PIM WG close to or even pass kNIM in the NIM WG. From Fig. 4
we can see with ϵPIM increasing, the loop of k versus a would shrink, and eventually disappear
around ϵPIM = 4.5. When ϵPIM further increases from 4.5, the curve appears again and becomes
larger. Since kNIM = 1.328 cm−1 does not change, the scenario of ϵPIM = 4.5 in fact is around the
critical point where the degeneracy of kPIM = kNIM takes place.

3. Non-Hermitian coupled-mode theory

In the above simulation all the media in the coupled WGs are loss-free. Nevertheless, the
coalescence of eigenmodes at a critical value of ac hints that this loss-free system can possess
non-Hermitian phenomenon. Here we could utilize a non-Hermitian coupled-mode theory [21]
in the form of MΨ = k±Ψ to explain the results, which is⎡⎢⎢⎢⎢⎣

kNIM −γ

γ kPIM

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
ψNIM

ψPIM

⎤⎥⎥⎥⎥⎦ = k±
⎡⎢⎢⎢⎢⎣
ψNIM

ψPIM

⎤⎥⎥⎥⎥⎦ . (7)
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Here kNIM and kPIM are the wavevectors of guided modes in separated NIM and PIM WGs,
respectively, at the given angular frequency ω. Both kNIM and kPIM are real. Parameter γ is
also real and characterizes the mutual coupling between the two WGs. The basic vectors ψNIM
and ψPIM represent field components of the guided modes in characterizing the eigenvectors.
Evidently, Eq. (7) is non-Hermitian because the off-diagonal elements are not conjugates, i.e.
M12 ≠ M∗

21. The choice of M21 = −M12 = γ can be explained by simultaneously considering two
aspects. One is that the total energy should be conserved in this loss-free system [28,32]. The
other is that the propagating directions of energy in the NIM and PIM WGs are opposite to each
other, so the coupling between them is contradirectional [28,32].

To see whether Eq. (7) can explain the main features in our former analysis, we can first solve
it. Defining

kNIM = k0 + ∆, (8)

kPIM = k0 − ∆, (9)

where k0 is the mean wavevector, and ∆ is the detuning, the eigen-solutions k± are

k± = k0 ±

√︂
∆2 − γ2. (10)

By using Eq. (10) we can fit the curves k versus a given by Eq. (6) and find how the magnitude
of γ varies with the WG distance a. Results of ϵPIM = 4 is shown in Fig. 5. When performing the
best fitting, we firstly choose proper values of kNIM and kPIM, which are 1.328 cm−1 and 1.186
cm−1, respectively, for the results shown in Fig. 5. The values of kNIM and kPIM, as well as those
of k0 = 1.257 cm−1 and ∆ = 0.071 cm−1, are kept as constants. Then, based on the k± values
obtained from Eq. (6) we can use Eq. (10) to find the values of γ. Because the two solutions of
Eq. (6) might give different values of γ, we would only keep the averaged one, which is then
substituted back into Eq. (10) to test the discrepancy from Eq. (6). Similar fitting process is also
performed in the phase-broken region of complex k values.

Fig. 5. Variations of (a) k and (b) γ versus the WG distance a by using Eq. (10) to fit the
results from Eq. (6). Green line in (b) is an exponential fit of γ using Eq. (11).

From Fig. 5(a) we can see the prediction from Eq. (10) fits well with those of Eq. (6).
The deviation between Re(k) in the phase-broken region might be fixed by assuming a spatial
dependence of kNIM and kPIM on a, which would not be discussed here. It is interesting to
emphasize that the magnitude of γ exponentially decreases with increasing a, and can be
approximately expressed by

γ = γ0 exp(−a/Lc) (11)

where γ0 = 0.18 cm−1. The decay length Lc equals 1.45 cm, very close to the value of 1.438
cm given by β−1 = (k2

0 − ω
2/c2)−1/2. Evidently, when a is smaller than ac, the mutual coupling
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strength |γ | is stronger than |∆|, then the phase of the coupled WGs is spontaneously broken and
gives complex k values. When a is larger than ac, |γ | becomes smaller than |∆|, and the phase is
conserved. Position ac is the critical phase transition point of EP where |γ | = |∆|. When the
two WGs are far away from each other, γ is zero, and k± = kNIM, PIM. Now the eigenvectors are
Ψ = [1, 0]T and Ψ = [0, 1]T , and the fields are localized in separated WGs.

Furthermore, the detuning ∆ determines the size of the loop in the k versus a spectrum. When
kNIM = kPIM, i.e. the eigensolutions in the NIM and PIM WGs are degenerated, the phase is
always spontaneously broken because now ∆ = 0 and any nonzero γ would give complex k±
values. It is the case shown in Fig. 4(c) at ϵPIM = 4.5. Away from this degeneracy scenario, |∆|
increases and the loop becomes more and more great, which can be observed in other plots in
Fig. 4.

Now, we can pay attention to the EP where

∆ = ±γ (12)

that gives k± = k0. The eigenfuntion of the eigenmode is⎡⎢⎢⎢⎢⎣
ψNIM

ψPIM

⎤⎥⎥⎥⎥⎦EP

=

⎡⎢⎢⎢⎢⎣
1

sign(∆/γ)

⎤⎥⎥⎥⎥⎦ (13)

where the function sign(x) equals 1 (−1) when x>0 (x<0). In other words, at this EP the fields
in the two WGs are in-phase (a phase difference of zero) or out-phase (a phase difference of
π) with each other. The exact phase difference is determined by the sign of ∆/γ. Generally γ
is determined by the overlap integral of fields in the gap between the two WGs and its sign is
fixed [14,15,28], but sign(∆/γ) can be tuned by changing the resonant conditions of kNIM, PIM in
the two WGs, e.g. by changing the index of refraction inside or the thicknesses of WGs. As a
consequence, the eigenvetcor at EP is tunable.

Note that here we could not make any comment on the amplitudes of fields in the two WGs
because the refractive indexes in them are not required to be equal. It is in sharp contrast
with PT symmetric WGs that generally only symmetric configurations are considered [10–12].
This drawback hinders us to reveal more unique features about EP. However, the phase-jump,
as a signature of sign(∆/γ) at EP, is an observable, e.g. by choosing two sets of ϵPIM values
so that in one case ∆>0 while in the other case ∆<0, and then analyzing the field patterns
inside the structure. The results about the distributions of Ey at EPs when ϵPIM = 4.4(∆>0) and
ϵPIM = 4.6(∆<0) are shown in Fig. 6. From the two plots we can see the fields in the NIM WG
are almost identical, but the fields in the PIM WG are flipped with respect to each other. It is then
evident that the phase between the two WGs are shifted by π in the two scenarios. Furthermore,
associated with the π-phase jump there exists a node inside the gap between the two WGs (red
arrow in Fig. 6(b)), which implies that in this scenario ψNIM = −ψPIM. From the fact of ∆<0 in
Fig. 6(b) we can also conclude that γ>0.

The group velocities vg of the guided modes can also be analyzed. However, since here the
angular frequency ω is kept constant, vg cannot be found from ∂ω/∂k. Here we calculate vg by
using the Poynting vector Sz and the energy density W via vg = Sz/W. When calculating the
energy density W we have adapted the formula of ϵ0∂(ϵNIMω)/∂ω |E |2 + µ0∂(µNIMω)/∂ω |H |2

[21,22]. At 5 GHz, the utilized dispersion gives ∂(ϵNIMω)/∂ω = 5 and ∂(µNIMω)/∂ω = 4.975.
The curves of vg versus a at ϵPIM = 4.0 are shown in Fig. 7. As expected, the values of vg

are limited in the region defined by vg = −0.2c of NIM (it is negative because the energy flux
is backward propagating) and vg = 0.5c of PIM, where c is the speed of light. When the field
is mainly localized in the NIM WG, vg is negative. Otherwise vg is positive. As a decreases,
the split between k also decreases, and vg of the two branches approach to each other. At EP
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Fig. 6. Distributions of fields Ey at EPs when (a) ϵPIM = 4.4(∆>0), and (b) ϵPIM = 4.6(∆<0),
respectively. Red arrow represents the node in (b), which is associated with the π-phase
jump at EP when ∆ varies its sign.

Fig. 7. Group velocity vg versus a when ϵPIM = 4.0. At EP vg is zero.

the group velocity is zero, which can be explained by the balanced positive energy flux in PIM
(including the surrounded air) and negative energy flux in NIM, respectively.

Note that the stopped light at EP demonstrated here is different from that in PT symmetric
WGs [12–14]. Here the stopped light is associated with the negative flux in NIM, and the whole
structure is still Hermitian because no loss or gain is presented. On the contrary, the stopped
light in PT -symmetric WGs with spatial distributions of gain and loss cannot be explained by
the propagating of energy flux associated with real-valued fields [14], but is the consequence of
zero c-product [12,33] of the non-Hermitian system. The c-product can be applied when the two
WGs are not only geometric but also electromagnetic (except for the loss/gain effect) identical so
that ψ in the eigenvector can be unambiguously defined [12,33]. Here the two WGs are made of
different media, possess different indexes of refraction, and can have different thicknesses, so the
applicability of c-product needs further discussion.
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4. Discussion

Above we have shown that non-Hermitian optical effects can be observed in loss-free coupled
WGs made of NIMs. Here we would like to make further comments on the category of the
non-Hermitian effect. From Eq. (7) we can see it can be classified into the anti-PT symmetric
one because the diagonal elements of the 2 × 2 matrix M satisfy Im(M11) = Im(M22) and
M12 = −M∗

21. It should be emphasized that when utilizing Eq. (7) we have assumed that the
basic vectors ψNIM and ψPIM represent field components of the guided modes that characterize
the wave functions. The set of analogues of the basic vectors ψNIM = ENIM

y and ψPIM = EPIM
y

is adopted in our analysis. However, since the two WGs are not identical with each other, the
choice of the basis vectors is arbitrary. For example, we can also utilize another set of analogues
by adding an additional phase of π/2 to the basic vector ψPIM. Now, Eq. (7) becomes⎡⎢⎢⎢⎢⎣

kNIM jγ

jγ kPIM

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
ψNIM

jψPIM

⎤⎥⎥⎥⎥⎦ = k±
⎡⎢⎢⎢⎢⎣
ψNIM

jψPIM

⎤⎥⎥⎥⎥⎦ . (14)

Equation (14) is just the standard anti-PT symmetric operator that has been discussed in many
literatures [8–11]. It can also explain all the features on the dispersion and distributions of fields.
As for which one is preferred in studying NIM, we still prefer Eq. (7) because the node shown in
Fig. 6(b) can be more intuitively explained.

The importance of this article is that it proves we can access non-Hermitian optics without
using gain or loss. It also shows that the negative energy flux in NIM has many realistic
impacts on future applications, especially by considering the fact that all the media are loss-free.
Experimental investigation of the non-Hermitian effect discussed here can utilize documented
NIM design [26,27], and transfer to other frequency regimes by simply rescaling the geometric
parameters of the coupled-WG configuration. Theoretical interest can be paid to discuss the
deep-lying physics of the spontaneous phase broken, and the utilization of the anti-PT symmetry
in loss-free NIM to achieve higher-order EPs and mode switching purpose.

Before ending this article, we would like to emphasize again that the whole structure studied
here is loss- and gain-free. Consequently, in principle it is a closed Hermitian system, and the
energy should be conserved. The non-Hermitian effects discussed above, especially the existence
of complex k below ac, should not violate the principle of energy conservation. These complex-k
eigenmodes might be associated with some effects similar to the photonic bandgap effect and
waveguiding effect below cutoff, which forbid the propagation of optical field without absorbing
any energy [21,28]. Detailed discussion deserves our further efforts.

5. Conclusion

In summary, in this article we check the optical waves in coupled WGs made of lossless NIM
and PIM. We show that the guided modes in this kind of gain/loss-free optical system can also
support non-Hermitian features. A simple non-Hermitian coupled-mode theory is utilized to
explain our results. This theory proves that the critical degeneracy point at ac is an EP, and the
field dynamics induced by NIM belongs to anti-PT symmetry. Features at EPs including the
slow-light effect are discussed. This study highlights the non-negligible novelties of NIM, which
can be utilized in studying non-Hermitian optics to bypass many restrictions of PT symmetry.
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